The mineralogical composition of an aggregate influences its adhesion with bitumen and therefore its dynamic modulus. However, few studies have been conducted on this aspect. One of the most used properties to describ...The mineralogical composition of an aggregate influences its adhesion with bitumen and therefore its dynamic modulus. However, few studies have been conducted on this aspect. One of the most used properties to describe the impact of aggregate on the adhesiveness phenomena is the zeta potential. In this study, the first mineralogical and chemical properties were considered through the percentage of silica in the rock source of aggregates and the electric aggregate particles charge zeta. Dynamic modulus values used for regression process are determined from complex modulus test on nine asphalt concretes mix designed with aggregate types (basalt of Diack, quartzite of Bakel and Limestone of Bandia). The results showed that aggregate with high percentage of silica have higher zeta potential than aggregate with low percentage of silica. The development of a zeta potential predictive model showed a strong sensitivity to silica. The results of the complex modulus tests showed that Hot Mixture Asphalt (HMA) mixed with aggregate containing high silica contents gave better results than those mixed with aggregates containing low percentage of silica. The dynamic modulus predictive models of HMA developed shows that it is the properties of bitumen that influence more. However, the effect of silica although low, is very marked at low temperatures and high frequencies.展开更多
In order to investigate the stress-dependent properties of hot-mix asphalt (HMA),a dynamic modulus test was conducted on a group of AC-20 specimens at various stress states and loading frequencies,respectively.A use...In order to investigate the stress-dependent properties of hot-mix asphalt (HMA),a dynamic modulus test was conducted on a group of AC-20 specimens at various stress states and loading frequencies,respectively.A user-defined material (UMAT )subroutine incorporating stress-dependent constitutive model was developed and finite element (FE)simulation was utilized to confirm the validity of the UMAT.A three-dimensional (3D )FE model for typical pavement structure was established,considering the HMA layer as a stress-dependent material and other layers as linear elastic materials.Periodic load was applied to the pavement model and the pavement responses were calculated,including dynamic modulus distributions,surface deflection,shear stress and tensile strain in the HMA layer,etc.Both test results and FE model predictions indicate that the dynamic modulus of asphalt concrete is sensitive to stress state and loading frequency.Using the nonlinear stress-dependent model results in greater predicted pavement responses compared with the linear elastic model.It is also found that the effects of stress-dependency on pavement responses become more significant as loading frequency decreases.展开更多
This paper presents an investigation into modelling the rheological properties of epoxy asphalt concrete( EAC) by using the Huet-Sayegh model. Complex modulus tests were conducted on EAC specimens at various temperatu...This paper presents an investigation into modelling the rheological properties of epoxy asphalt concrete( EAC) by using the Huet-Sayegh model. Complex modulus tests were conducted on EAC specimens at various temperature and loading frequency conditions. Dynamic modulus and phase angles obtained from the complex modulus tests were used in the construction of the Huet-Sayegh model. The dynamic modulus master curve was developed by the Huet-Sayegh model as well as the Burgers model for comparison purpose. The results showed that EAC exhibits typical rheological behavior whose dynamic modulus decreases with the increase of temperature while increases with the increase of frequency,and phase angles increase with the decrease of frequencies and the increase of temperatures. The Huet-Sayegh model predicts the dynamic modulus master curve of EAC very well and much better than the Burgers model over a wide range of frequencies.展开更多
Marble dust waste powder generated by the marble cutting industry has a high alkalinity.In this research,the use of marble dust(MD)as a mineral filler substitute in hot mixed asphalt(HMA)was evaluated.The Marshall mix...Marble dust waste powder generated by the marble cutting industry has a high alkalinity.In this research,the use of marble dust(MD)as a mineral filler substitute in hot mixed asphalt(HMA)was evaluated.The Marshall mix design was used to determine the optimum bitumen content(OBC)for all of the mixtures.For each of the four MD contents,i.e.,0,2%,4%,and 6%by weight of the total aggregates,four different bitumen percentages were used.The results of the Marshall stability test showed that the optimum filler content was 4%MD.Samples were prepared with 0 MD in the control mix and varying percentages of MD as an alternate filler.In addition,MD aided in increasing the Marshall stability,rutting resistance,and permanent deformation and reduced the fatigue life of asphalt mixtures.As the percentage of MD increases,the rutting resistance and stiffness at high temperatures both increase.As the percentage of MD increases,the fatigue life reduces.Rut resistance in high-temperature conditions can be improved by using MD in HMA as a partial substitute for stone dust(SD).In areas where extensive MD waste is present,MD can be incorporated into HMA mixtures instead of conventional fillers.展开更多
文摘The mineralogical composition of an aggregate influences its adhesion with bitumen and therefore its dynamic modulus. However, few studies have been conducted on this aspect. One of the most used properties to describe the impact of aggregate on the adhesiveness phenomena is the zeta potential. In this study, the first mineralogical and chemical properties were considered through the percentage of silica in the rock source of aggregates and the electric aggregate particles charge zeta. Dynamic modulus values used for regression process are determined from complex modulus test on nine asphalt concretes mix designed with aggregate types (basalt of Diack, quartzite of Bakel and Limestone of Bandia). The results showed that aggregate with high percentage of silica have higher zeta potential than aggregate with low percentage of silica. The development of a zeta potential predictive model showed a strong sensitivity to silica. The results of the complex modulus tests showed that Hot Mixture Asphalt (HMA) mixed with aggregate containing high silica contents gave better results than those mixed with aggregates containing low percentage of silica. The dynamic modulus predictive models of HMA developed shows that it is the properties of bitumen that influence more. However, the effect of silica although low, is very marked at low temperatures and high frequencies.
基金Jiangsu Provincial Transportation Science and Technology Project(No.2011Y02-1-G1)
文摘In order to investigate the stress-dependent properties of hot-mix asphalt (HMA),a dynamic modulus test was conducted on a group of AC-20 specimens at various stress states and loading frequencies,respectively.A user-defined material (UMAT )subroutine incorporating stress-dependent constitutive model was developed and finite element (FE)simulation was utilized to confirm the validity of the UMAT.A three-dimensional (3D )FE model for typical pavement structure was established,considering the HMA layer as a stress-dependent material and other layers as linear elastic materials.Periodic load was applied to the pavement model and the pavement responses were calculated,including dynamic modulus distributions,surface deflection,shear stress and tensile strain in the HMA layer,etc.Both test results and FE model predictions indicate that the dynamic modulus of asphalt concrete is sensitive to stress state and loading frequency.Using the nonlinear stress-dependent model results in greater predicted pavement responses compared with the linear elastic model.It is also found that the effects of stress-dependency on pavement responses become more significant as loading frequency decreases.
基金Sponsored by the Natgional Natural Science Foundation of China(Grant No.51208103)the China Postdoctoral Science Foundation(Grant No.2012M520976)the Basic Research Foundation of Southeast University
文摘This paper presents an investigation into modelling the rheological properties of epoxy asphalt concrete( EAC) by using the Huet-Sayegh model. Complex modulus tests were conducted on EAC specimens at various temperature and loading frequency conditions. Dynamic modulus and phase angles obtained from the complex modulus tests were used in the construction of the Huet-Sayegh model. The dynamic modulus master curve was developed by the Huet-Sayegh model as well as the Burgers model for comparison purpose. The results showed that EAC exhibits typical rheological behavior whose dynamic modulus decreases with the increase of temperature while increases with the increase of frequency,and phase angles increase with the decrease of frequencies and the increase of temperatures. The Huet-Sayegh model predicts the dynamic modulus master curve of EAC very well and much better than the Burgers model over a wide range of frequencies.
基金The author wishes to express his gratitude to the Department of Civil Engineering in the University of Engineering and Technology in Peshawar,for their assistance and guidance.
文摘Marble dust waste powder generated by the marble cutting industry has a high alkalinity.In this research,the use of marble dust(MD)as a mineral filler substitute in hot mixed asphalt(HMA)was evaluated.The Marshall mix design was used to determine the optimum bitumen content(OBC)for all of the mixtures.For each of the four MD contents,i.e.,0,2%,4%,and 6%by weight of the total aggregates,four different bitumen percentages were used.The results of the Marshall stability test showed that the optimum filler content was 4%MD.Samples were prepared with 0 MD in the control mix and varying percentages of MD as an alternate filler.In addition,MD aided in increasing the Marshall stability,rutting resistance,and permanent deformation and reduced the fatigue life of asphalt mixtures.As the percentage of MD increases,the rutting resistance and stiffness at high temperatures both increase.As the percentage of MD increases,the fatigue life reduces.Rut resistance in high-temperature conditions can be improved by using MD in HMA as a partial substitute for stone dust(SD).In areas where extensive MD waste is present,MD can be incorporated into HMA mixtures instead of conventional fillers.