As an alternative to conventional encapsulation concepts for a double glass photovoltaic(PV)module,we introduce an innovative ionomer-based multi-layer encapsulant,by which the application of additional edge sealing t...As an alternative to conventional encapsulation concepts for a double glass photovoltaic(PV)module,we introduce an innovative ionomer-based multi-layer encapsulant,by which the application of additional edge sealing to prevent moisture penetration is not required.The spontaneous moisture absorption and desorption of this encapsulant and its raw materials,poly(ethylene-co-acrylic acid)and an ionomer,are analyzed under different climatic conditions in this work.The relative air humidity is thermodynamically the driving force for these inverse processes and determines the corresponding equilibrium moisture content(EMC).Higher air humidity results in a larger EMC.The homogenization of the absorbed water molecules is a diffusion-controlled process,in which temperature plays a dominant role.Nevertheless,the diffusion coefficient at a higher temperature is still relatively low.Hence,under normal climatic conditions for the application of PV modules,we believe that the investigated ionomer-based encapsulant can“breathe”the humidity:During the day,when there is higher relative humidity,it“inhales”(absorbs)moisture and restrains it within the outer edge of the module;then at night,when there is a lower relative humidity,it“exhales”(desorbs)the moisture.In this way,the encapsulant protects the cell from moisture ingress.展开更多
The purpose of this study is to determine the morphological, microstructural characteristics and water diffusion parameters of the Canarium schweinfurthii (CS) shellnut. This work is part of a vast project to valorize...The purpose of this study is to determine the morphological, microstructural characteristics and water diffusion parameters of the Canarium schweinfurthii (CS) shellnut. This work is part of a vast project to valorize the above-mentioned cores for possible industrial use as charges in composites or abrasives materials. The study was based on the characterization of intrinsic physical characteristics of the coreshells scanning electron microscopic (SEM) observations desorption, adsorption and absorption kinetics. The water diffusion phenomenon was modeled and it appears that the Page model well predicted the kinetic of drying, absorption and adsorption. The effective diffusion coefficient and the energy of activation were calculated at three isothermal temperatures (50<span style="white-space:nowrap;">°</span>C, 70<span style="white-space:nowrap;">°</span>C and 90<span style="white-space:nowrap;">°</span>C). There was a tendency for hysteresis in the sorption-desorption cycles. These results strongly predicted the possibility of using these products as a filler in composites, clay building materials and cement because of their high water diffusion stability on a macroscopic scale.展开更多
文摘As an alternative to conventional encapsulation concepts for a double glass photovoltaic(PV)module,we introduce an innovative ionomer-based multi-layer encapsulant,by which the application of additional edge sealing to prevent moisture penetration is not required.The spontaneous moisture absorption and desorption of this encapsulant and its raw materials,poly(ethylene-co-acrylic acid)and an ionomer,are analyzed under different climatic conditions in this work.The relative air humidity is thermodynamically the driving force for these inverse processes and determines the corresponding equilibrium moisture content(EMC).Higher air humidity results in a larger EMC.The homogenization of the absorbed water molecules is a diffusion-controlled process,in which temperature plays a dominant role.Nevertheless,the diffusion coefficient at a higher temperature is still relatively low.Hence,under normal climatic conditions for the application of PV modules,we believe that the investigated ionomer-based encapsulant can“breathe”the humidity:During the day,when there is higher relative humidity,it“inhales”(absorbs)moisture and restrains it within the outer edge of the module;then at night,when there is a lower relative humidity,it“exhales”(desorbs)the moisture.In this way,the encapsulant protects the cell from moisture ingress.
文摘The purpose of this study is to determine the morphological, microstructural characteristics and water diffusion parameters of the Canarium schweinfurthii (CS) shellnut. This work is part of a vast project to valorize the above-mentioned cores for possible industrial use as charges in composites or abrasives materials. The study was based on the characterization of intrinsic physical characteristics of the coreshells scanning electron microscopic (SEM) observations desorption, adsorption and absorption kinetics. The water diffusion phenomenon was modeled and it appears that the Page model well predicted the kinetic of drying, absorption and adsorption. The effective diffusion coefficient and the energy of activation were calculated at three isothermal temperatures (50<span style="white-space:nowrap;">°</span>C, 70<span style="white-space:nowrap;">°</span>C and 90<span style="white-space:nowrap;">°</span>C). There was a tendency for hysteresis in the sorption-desorption cycles. These results strongly predicted the possibility of using these products as a filler in composites, clay building materials and cement because of their high water diffusion stability on a macroscopic scale.