During the processes of methane adsorption and desorption,the internal structure of coal changes,accordingly leading to changes in electrical conductivity.In this paper,using low rank coal seams of the Yan'an Form...During the processes of methane adsorption and desorption,the internal structure of coal changes,accordingly leading to changes in electrical conductivity.In this paper,using low rank coal seams of the Yan'an Formation in the Dafbsi field as the research subject,the relationship between coal resistivity,methane adsorption quantity,and equilibrium pressure is analyzed through proximate analysis,mercury injection tests,low temperature liquid nitrogen adsorption tests,and coal resistivity measurements during methane adsorption and desorption.The results show that during the process of pressure rise and methane adsorption,the conductivity of coal increases,resulting from heat release from methane adsorption,coal matrix swelling and adsorbed water molecules replaced by methane,but the resistivity reduction gradually decreases.The relationship between coal resistivity and methane adsorption quantity and equilibrium pressure can be described by a quadratic function.During the processes of depressurization and desorption,the resistivity of coal rebounds slightly,due to decalescence of methane desorption,coal matrix shrinkage and water-gas displacement,and the relationship coincides with a linear function.Methane adsorption leads to irreversible changes in coal internal structure and enhances the coal conductivity,and resistivity can not be restored to the initial level even after methane desorption.The resistivity and reduction rate of durain are higher than those of vitrain,with relatively greater homogeneous pore throat structure and fewer charged particles in the double electric layer.In addition,moisture can enhance the conductivity of coal and makes it change more complexly during methane adsorption and desorption.展开更多
The adsorption-desorption characteristics of chlorimuron-ethyl in soils were investigated to provide the basic data for evaluating the safety in field and the risk to water resource. The adsorption-desorption experime...The adsorption-desorption characteristics of chlorimuron-ethyl in soils were investigated to provide the basic data for evaluating the safety in field and the risk to water resource. The adsorption-desorption experiment was conducted by the batch equilibration and HPLC techniques; furthermore, data were analyzed with 5 mathematic models to describe the characteristics and mechanism of adsorption-desorption and translocation of the herbicide in soils. The results showed that the adsorption-desorption isotherms of chlorimuron-ethyl fitted for the Freundlich model well, and the physical reaction presents the main contribution during the adsorption-desorption process. The adsorption values (Kads-f) of chlorimuron-ethyl in 8 types of soil ranged from 0.798 to 6.891. The isotherms of 2# (Jiangxi clay) and 3# (Jiangxi sand loam) soils belong to the S-type curve, while the isotherms of another 6 type soils belong to the L-type isotherm. The results of desorption indicated that the hysteresis phenomena appeared during the desorption process, and the hysteresis coefficients (H) of the herbicides in 8 soils varied from 0.259-0.980. Furthermore, Kads-f and desorption values (Kads-f) increased with the OM (%) and the clay content increasing, while the values decreased with the soils pH increasing. The H values decreased with the OM and the clay content increasing, and increased with the soils pH increasing. It can be concluded that the low adsorption abilities of chlorimuron-ethyl in test soils and un-reversible adsorption existed in the process, which will induce the great translocation of the herbicide after application in field. It can be transported to ground or groundwater causing risk to environments. The physical and chemical properties of soils, including the OM, the clay content, and the pH of soil were the dominating factors during the adsorption-desorption.展开更多
Three chelating resins were prepared by reacting poly (beta-chloroethyl glycidyl ether) with benzidine, o-tolidine and o-dianisidine respectively, and their structures were confirmed by IR spectra and elementary analy...Three chelating resins were prepared by reacting poly (beta-chloroethyl glycidyl ether) with benzidine, o-tolidine and o-dianisidine respectively, and their structures were confirmed by IR spectra and elementary analyses. The adsorption properties of the resins for Au(III), pd(II), Pt(IV), Hg(II), Cu(II), Pb(II) and Zn(II) were also investigated. The results show that the resin incorporating o-dianisidine exhibits high affinity for Au(III) within a broad range of hydrochloric acid, and selectively sorbs Au(III) in the coexistance of Cu(II), Zn(II) and Mg(II). Desorption of Au(III), Pd(II) and Pt(IV) sorbed proceeded quantitatively using 0.1 mol/l hydrochloric acid containing 2%-10% thiourea as desorbents.展开更多
Two variable charge soils were incubated with biochars derived from straws of peanut, soybean, canola, and rice to investigate the effect of the biochars on their chemical properties and Pb(II) adsorption using batc...Two variable charge soils were incubated with biochars derived from straws of peanut, soybean, canola, and rice to investigate the effect of the biochars on their chemical properties and Pb(II) adsorption using batch experiments. The results showed soil cation exchange capacity (CEC) and pH significantly increased after 30 d of incubation with the biochars added. The incorporation of the biochars markedly increased the adsorption of Pb(II), and both the electrostatic and non-electrostatic adsorption mechanisms contributed to Pb(II) adsorption by the variable charge soils. Adsorption isotherms illustrated legume- straw derived biochars more greatly increased Pb(II) adsorption on soils through the non-electrostatic mechanism via the formation of surface complexes between Pb(II) and acid functional groups of the biochars than did non-legume straw biochars. The adsorption capacity of Pb(II) increased, while the desorption amount slightly decreased with the increasing suspension pH for the studied soils, especially in a high suspension pH, indicating that precipitation also plays an important role in immobilizing Pb(II) to the soils.展开更多
粉煤瓦斯解吸实验是研究粉煤瓦斯解吸动力学特征的常用手段之一,其结果是揭示粉煤放散瓦斯能力的重要参数。传统实验方法在煤样罐泄压后开始测量瓦斯解吸数据,存在较大误差。利用甲烷与氦气的粉煤吸附特性差异性提出了改进的粉煤瓦斯解...粉煤瓦斯解吸实验是研究粉煤瓦斯解吸动力学特征的常用手段之一,其结果是揭示粉煤放散瓦斯能力的重要参数。传统实验方法在煤样罐泄压后开始测量瓦斯解吸数据,存在较大误差。利用甲烷与氦气的粉煤吸附特性差异性提出了改进的粉煤瓦斯解吸实验方法,并建立了初始瓦斯粉煤快速解吸模型,从而揭示了煤体粉化后瓦斯快速解吸的内在机制。研究结果表明:解吸开始的前5 s,0.075~0.150 mm JG71煤样解吸的瓦斯量是1.00~2.36 mm煤样的2.05倍,而0.075~0.150 mm JG82煤样解析的瓦斯量是1.00~2.30煤样的10.29倍;煤样粉化程度越高,吸附平衡压力越大,初始瓦斯解吸速度越大,传统实验方法得到的数据误差越大。研究结果为突出粉化煤体快速解吸瓦斯、提供瓦斯膨胀能、促进煤与瓦斯突出传播的研究提供了数据支撑,同时为完善煤与瓦斯致灾机理奠定基础。展开更多
Moisture sorption isotherms and thermodynamic properties of Camellia oleifera seeds as influenced by oil content were investigated.Moisture desorption and adsorption isotherms of Camellia oleifera seeds,kernels and sh...Moisture sorption isotherms and thermodynamic properties of Camellia oleifera seeds as influenced by oil content were investigated.Moisture desorption and adsorption isotherms of Camellia oleifera seeds,kernels and shells from three varieties were determined using constant temperature and humidity chamber method at different temperatures(10°C,25°C,and 40°C)with water activity ranging from 0.20 to 0.90.Six selected mathematic models were employed to fit the experimental data.The Peleg model gave the best results for both seeds and kernels and Langmuir model was the best for shells.The difference of equilibrium moisture contents at the same water activities during desorption and adsorption indicated the occurrence of hysteresis of adsorption processes and the equilibrium moisture contents tended to decrease with the increasing oil content and temperature.The binding energy and average capacity per unit mass decreased with increasing temperature and oil content.The relationships between water activity and the logarithm of sorption activity showed the capillary porous body characteristics of the seeds.展开更多
基金financially supported by the Independent Projects of the Key Lab. of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources of China (grants No. KF2019-2, ZKF2018-1, KF2018-4, ZP2018-2)the Major National Science and Technology Special Projects (grant No. 2016ZX05042004)+3 种基金the Projects Funded by China Postdoctoral Science Foundation (grant No. 2019M653873XB)the Natural Science Foundation Research Projects of Shaanxi Province (grant No. 2019JQ-245)the Doctoral Research Starting Foundation of Xi’an University of Science and Technology (grant No. 2016QDJ041)the Research Projects of the Geological Research Institute for Coal Green Mining of Xi’an University of Science and Technology (grant No. MTy2019-04)
文摘During the processes of methane adsorption and desorption,the internal structure of coal changes,accordingly leading to changes in electrical conductivity.In this paper,using low rank coal seams of the Yan'an Formation in the Dafbsi field as the research subject,the relationship between coal resistivity,methane adsorption quantity,and equilibrium pressure is analyzed through proximate analysis,mercury injection tests,low temperature liquid nitrogen adsorption tests,and coal resistivity measurements during methane adsorption and desorption.The results show that during the process of pressure rise and methane adsorption,the conductivity of coal increases,resulting from heat release from methane adsorption,coal matrix swelling and adsorbed water molecules replaced by methane,but the resistivity reduction gradually decreases.The relationship between coal resistivity and methane adsorption quantity and equilibrium pressure can be described by a quadratic function.During the processes of depressurization and desorption,the resistivity of coal rebounds slightly,due to decalescence of methane desorption,coal matrix shrinkage and water-gas displacement,and the relationship coincides with a linear function.Methane adsorption leads to irreversible changes in coal internal structure and enhances the coal conductivity,and resistivity can not be restored to the initial level even after methane desorption.The resistivity and reduction rate of durain are higher than those of vitrain,with relatively greater homogeneous pore throat structure and fewer charged particles in the double electric layer.In addition,moisture can enhance the conductivity of coal and makes it change more complexly during methane adsorption and desorption.
文摘The adsorption-desorption characteristics of chlorimuron-ethyl in soils were investigated to provide the basic data for evaluating the safety in field and the risk to water resource. The adsorption-desorption experiment was conducted by the batch equilibration and HPLC techniques; furthermore, data were analyzed with 5 mathematic models to describe the characteristics and mechanism of adsorption-desorption and translocation of the herbicide in soils. The results showed that the adsorption-desorption isotherms of chlorimuron-ethyl fitted for the Freundlich model well, and the physical reaction presents the main contribution during the adsorption-desorption process. The adsorption values (Kads-f) of chlorimuron-ethyl in 8 types of soil ranged from 0.798 to 6.891. The isotherms of 2# (Jiangxi clay) and 3# (Jiangxi sand loam) soils belong to the S-type curve, while the isotherms of another 6 type soils belong to the L-type isotherm. The results of desorption indicated that the hysteresis phenomena appeared during the desorption process, and the hysteresis coefficients (H) of the herbicides in 8 soils varied from 0.259-0.980. Furthermore, Kads-f and desorption values (Kads-f) increased with the OM (%) and the clay content increasing, while the values decreased with the soils pH increasing. The H values decreased with the OM and the clay content increasing, and increased with the soils pH increasing. It can be concluded that the low adsorption abilities of chlorimuron-ethyl in test soils and un-reversible adsorption existed in the process, which will induce the great translocation of the herbicide after application in field. It can be transported to ground or groundwater causing risk to environments. The physical and chemical properties of soils, including the OM, the clay content, and the pH of soil were the dominating factors during the adsorption-desorption.
文摘Three chelating resins were prepared by reacting poly (beta-chloroethyl glycidyl ether) with benzidine, o-tolidine and o-dianisidine respectively, and their structures were confirmed by IR spectra and elementary analyses. The adsorption properties of the resins for Au(III), pd(II), Pt(IV), Hg(II), Cu(II), Pb(II) and Zn(II) were also investigated. The results show that the resin incorporating o-dianisidine exhibits high affinity for Au(III) within a broad range of hydrochloric acid, and selectively sorbs Au(III) in the coexistance of Cu(II), Zn(II) and Mg(II). Desorption of Au(III), Pd(II) and Pt(IV) sorbed proceeded quantitatively using 0.1 mol/l hydrochloric acid containing 2%-10% thiourea as desorbents.
基金supported by the Key Technoligies R&D Program of China during the 12th Five-Year Plan period (2012BAJ24B06)the National Natural Science Foundation of China (41230855)
文摘Two variable charge soils were incubated with biochars derived from straws of peanut, soybean, canola, and rice to investigate the effect of the biochars on their chemical properties and Pb(II) adsorption using batch experiments. The results showed soil cation exchange capacity (CEC) and pH significantly increased after 30 d of incubation with the biochars added. The incorporation of the biochars markedly increased the adsorption of Pb(II), and both the electrostatic and non-electrostatic adsorption mechanisms contributed to Pb(II) adsorption by the variable charge soils. Adsorption isotherms illustrated legume- straw derived biochars more greatly increased Pb(II) adsorption on soils through the non-electrostatic mechanism via the formation of surface complexes between Pb(II) and acid functional groups of the biochars than did non-legume straw biochars. The adsorption capacity of Pb(II) increased, while the desorption amount slightly decreased with the increasing suspension pH for the studied soils, especially in a high suspension pH, indicating that precipitation also plays an important role in immobilizing Pb(II) to the soils.
文摘粉煤瓦斯解吸实验是研究粉煤瓦斯解吸动力学特征的常用手段之一,其结果是揭示粉煤放散瓦斯能力的重要参数。传统实验方法在煤样罐泄压后开始测量瓦斯解吸数据,存在较大误差。利用甲烷与氦气的粉煤吸附特性差异性提出了改进的粉煤瓦斯解吸实验方法,并建立了初始瓦斯粉煤快速解吸模型,从而揭示了煤体粉化后瓦斯快速解吸的内在机制。研究结果表明:解吸开始的前5 s,0.075~0.150 mm JG71煤样解吸的瓦斯量是1.00~2.36 mm煤样的2.05倍,而0.075~0.150 mm JG82煤样解析的瓦斯量是1.00~2.30煤样的10.29倍;煤样粉化程度越高,吸附平衡压力越大,初始瓦斯解吸速度越大,传统实验方法得到的数据误差越大。研究结果为突出粉化煤体快速解吸瓦斯、提供瓦斯膨胀能、促进煤与瓦斯突出传播的研究提供了数据支撑,同时为完善煤与瓦斯致灾机理奠定基础。
基金The authors acknowledge that this work was financially supported by the Gannan Oil Tea Camellia Industry Collaborative Innovation Center(Grant No.YP201610).
文摘Moisture sorption isotherms and thermodynamic properties of Camellia oleifera seeds as influenced by oil content were investigated.Moisture desorption and adsorption isotherms of Camellia oleifera seeds,kernels and shells from three varieties were determined using constant temperature and humidity chamber method at different temperatures(10°C,25°C,and 40°C)with water activity ranging from 0.20 to 0.90.Six selected mathematic models were employed to fit the experimental data.The Peleg model gave the best results for both seeds and kernels and Langmuir model was the best for shells.The difference of equilibrium moisture contents at the same water activities during desorption and adsorption indicated the occurrence of hysteresis of adsorption processes and the equilibrium moisture contents tended to decrease with the increasing oil content and temperature.The binding energy and average capacity per unit mass decreased with increasing temperature and oil content.The relationships between water activity and the logarithm of sorption activity showed the capillary porous body characteristics of the seeds.