[ Objective] The study was to compare the structural and moisture characteristics of leaf from the plantlets of three types of omamental lily( Lilium brownii). [ Method ] The paraffin sections of leaves of tested li...[ Objective] The study was to compare the structural and moisture characteristics of leaf from the plantlets of three types of omamental lily( Lilium brownii). [ Method ] The paraffin sections of leaves of tested lily varieties were prepared and then observed under microscope, and the stomatal characteristics and moisture characteristics of tested lily varieties were measured. I Resaltl All the three ornamental lily varieties show isobilateral leaf, single layer of epicuticula and lower epidermis, and no obvious differentiation of palisade tissue and spongy tissue; their stomata distribute in lower epidermis, and the guard cells are dumbbell-shaped; all of these matedais present high moisture. For the leaf sick- ness, midrib sickness and mesophyll tissue sickness, the order was determined to be oriental lily 〉 Lilium/ongiflorum 〉 Asian lily; of the three types of ornamental lily, Ulium Iongiflorum has the largest stomatai aperture and Asian lily has the smallest; focusing the water potential and moisture, the turn was Asian lily 〉 oriental lily 〉 Lilium Iong'fflorum. [ Condusion] The study may facilitate the artificial regulation of the growth conditions of the plantlets of ornamental lily.展开更多
Ecological efficiency changes of soil moisture were researched in karst areas with different land type uses, including farmland, abandoned farmland (1 y) and shrub land (1 y), sparse wood land (15 y), secondary ...Ecological efficiency changes of soil moisture were researched in karst areas with different land type uses, including farmland, abandoned farmland (1 y) and shrub land (1 y), sparse wood land (15 y), secondary forest (25 y) and the re- sults showed that physical property of soil was not a simple "improvement" process during land type evolution. Specifically, from farmland to secondary forest, the con- tent of topsoils changed from being washed away to accumulation and soil bulk density changed from increasing to decreasing. For example, soil bulk densities of abandoned farmland and shrub land increased by 6.6% and 11.57% compared with farmland, and of sparse wood land and forest land decreased by 5.0% and 10.0%. The change trend of soil bulk density was just in contrary to total porosity. Available water capacity was the lowest of shrub land, but increased in rest land types. The increase tended to be volatile in 5.1%-12.5% of different land types and water-sta- ble aggregate content (〉0.25 mm) reached the highest of sparse wood land. The destruction rate, however, was declining in the process of land type evolution and the increase was in the range of 34.0%-64.7% compared with farmland. The de- struction rate of aggregate was of negative correlation with organic matter. Water- holding capacity was the best of forest land and abandoned farmland and the poor- est of shrub land, close to sparse wood land. Water-supplying capacity from high to low was as follows: farmland〉sparse wood land〉secondary forest〉shrub land〉a- bandoned farmland. It is obvious that water-holding capacity and water-supplying capacity are not consistent, but both are closely related to the content of soil clays, porosity, and aggregate stability.展开更多
Underground coal mining causes land subsidence,and backfilling with Yellow River sediment is an effective reclamation technology to restore farmland in China.To date,two-layer soil reconstructed(TSR)for subsided land ...Underground coal mining causes land subsidence,and backfilling with Yellow River sediment is an effective reclamation technology to restore farmland in China.To date,two-layer soil reconstructed(TSR)for subsided land reclamation resulted in poor capacity to retain water.To solve this problem,multi-layered soil reconstructed(MSR),sandwiching soil interlayers between sediment,was developed as a new reclamation strategy with Yellow River sediment.In order to evaluate the impact of soil interlayer on moisture characteristics,laboratory experiments of infiltration and evaporation were conducted.Two control treatments(CK1,CK2)and four experimental treatments(T1-T4)were designed.CK1 was undamaged farmland,CK2 was conventional reconstructed two-layers soil profile(filled sediment with 40 cm soil cover).T1-T4 were multiple-layers soil profiles sandwiching different structures of soil interlayers between sediment layers.The results indicated that putting interlayers into sediment reduced water leakage and water evaporation,improved the water-holding capacity of conventional two-layer soil profiles.The total thickness of soil interlayers of 30 cm(T3 and T4)was better than 20 cm(T1 and T2)and two soil interlayers(T2)were better than one(T1)on water-holding capacity.Furthermore,the best reconstructed soil profile was T3,sandwiched two soil interlayer and the first thickness was 20 cm.This treatment had the greatest improvement on soil water holding capacity with an increase of 49.14%compared to CK2 at the end of the evaporation and was closest to CK1(402.31 mm).This study provided experimental evidence that compares with TSR,MRS improved the moisture characteristics of backfilling with Yellow River sediment.展开更多
This study investigates the impact of soil moisture availability on dispersion-related characteristics: surface friction velocity (u* ), characteristic scales of temperature and humidity (T * and q * ), the planetary ...This study investigates the impact of soil moisture availability on dispersion-related characteristics: surface friction velocity (u* ), characteristic scales of temperature and humidity (T * and q * ), the planetary boundary layer height (h) and atmospheric stability classified by Monin-Obukhov length (L), Kazanski-Monin parameter (μ) and convective velocity scale (w* ) during daytime convective condition using a one-dimensional primitive equation with a refined soil model.展开更多
On the basis of discussing the influencing mode of plant moisture stress on plant physiological process and the division of soil moisture availability range, the water suction values partitioning soil moisture were pu...On the basis of discussing the influencing mode of plant moisture stress on plant physiological process and the division of soil moisture availability range, the water suction values partitioning soil moisture were put forward, and then the corresponding water moistures under water stress were obtained by conversing together with characteristic curve of water moisture.展开更多
文摘[ Objective] The study was to compare the structural and moisture characteristics of leaf from the plantlets of three types of omamental lily( Lilium brownii). [ Method ] The paraffin sections of leaves of tested lily varieties were prepared and then observed under microscope, and the stomatal characteristics and moisture characteristics of tested lily varieties were measured. I Resaltl All the three ornamental lily varieties show isobilateral leaf, single layer of epicuticula and lower epidermis, and no obvious differentiation of palisade tissue and spongy tissue; their stomata distribute in lower epidermis, and the guard cells are dumbbell-shaped; all of these matedais present high moisture. For the leaf sick- ness, midrib sickness and mesophyll tissue sickness, the order was determined to be oriental lily 〉 Lilium/ongiflorum 〉 Asian lily; of the three types of ornamental lily, Ulium Iongiflorum has the largest stomatai aperture and Asian lily has the smallest; focusing the water potential and moisture, the turn was Asian lily 〉 oriental lily 〉 Lilium Iong'fflorum. [ Condusion] The study may facilitate the artificial regulation of the growth conditions of the plantlets of ornamental lily.
基金Supported by National Key Program of Science and Technology(2011BAC09B01,2006BAC01A16)Natural Science Foundation Project of Chongqing(CSTC,2009BA0002)~~
文摘Ecological efficiency changes of soil moisture were researched in karst areas with different land type uses, including farmland, abandoned farmland (1 y) and shrub land (1 y), sparse wood land (15 y), secondary forest (25 y) and the re- sults showed that physical property of soil was not a simple "improvement" process during land type evolution. Specifically, from farmland to secondary forest, the con- tent of topsoils changed from being washed away to accumulation and soil bulk density changed from increasing to decreasing. For example, soil bulk densities of abandoned farmland and shrub land increased by 6.6% and 11.57% compared with farmland, and of sparse wood land and forest land decreased by 5.0% and 10.0%. The change trend of soil bulk density was just in contrary to total porosity. Available water capacity was the lowest of shrub land, but increased in rest land types. The increase tended to be volatile in 5.1%-12.5% of different land types and water-sta- ble aggregate content (〉0.25 mm) reached the highest of sparse wood land. The destruction rate, however, was declining in the process of land type evolution and the increase was in the range of 34.0%-64.7% compared with farmland. The de- struction rate of aggregate was of negative correlation with organic matter. Water- holding capacity was the best of forest land and abandoned farmland and the poor- est of shrub land, close to sparse wood land. Water-supplying capacity from high to low was as follows: farmland〉sparse wood land〉secondary forest〉shrub land〉a- bandoned farmland. It is obvious that water-holding capacity and water-supplying capacity are not consistent, but both are closely related to the content of soil clays, porosity, and aggregate stability.
基金This work was financially supported by the National Natural Science Foundation of China(No.41771542)The authors would like to express appreciation to members of the research group at the China University of Mining and Technology for providing great help in terms of experiments.
文摘Underground coal mining causes land subsidence,and backfilling with Yellow River sediment is an effective reclamation technology to restore farmland in China.To date,two-layer soil reconstructed(TSR)for subsided land reclamation resulted in poor capacity to retain water.To solve this problem,multi-layered soil reconstructed(MSR),sandwiching soil interlayers between sediment,was developed as a new reclamation strategy with Yellow River sediment.In order to evaluate the impact of soil interlayer on moisture characteristics,laboratory experiments of infiltration and evaporation were conducted.Two control treatments(CK1,CK2)and four experimental treatments(T1-T4)were designed.CK1 was undamaged farmland,CK2 was conventional reconstructed two-layers soil profile(filled sediment with 40 cm soil cover).T1-T4 were multiple-layers soil profiles sandwiching different structures of soil interlayers between sediment layers.The results indicated that putting interlayers into sediment reduced water leakage and water evaporation,improved the water-holding capacity of conventional two-layer soil profiles.The total thickness of soil interlayers of 30 cm(T3 and T4)was better than 20 cm(T1 and T2)and two soil interlayers(T2)were better than one(T1)on water-holding capacity.Furthermore,the best reconstructed soil profile was T3,sandwiched two soil interlayer and the first thickness was 20 cm.This treatment had the greatest improvement on soil water holding capacity with an increase of 49.14%compared to CK2 at the end of the evaporation and was closest to CK1(402.31 mm).This study provided experimental evidence that compares with TSR,MRS improved the moisture characteristics of backfilling with Yellow River sediment.
文摘This study investigates the impact of soil moisture availability on dispersion-related characteristics: surface friction velocity (u* ), characteristic scales of temperature and humidity (T * and q * ), the planetary boundary layer height (h) and atmospheric stability classified by Monin-Obukhov length (L), Kazanski-Monin parameter (μ) and convective velocity scale (w* ) during daytime convective condition using a one-dimensional primitive equation with a refined soil model.
文摘On the basis of discussing the influencing mode of plant moisture stress on plant physiological process and the division of soil moisture availability range, the water suction values partitioning soil moisture were put forward, and then the corresponding water moistures under water stress were obtained by conversing together with characteristic curve of water moisture.