Excessive emissions of nitrogen oxides from flue gas have imposed various detrimental impacts on environment,and the development of deNO_(x) catalysts with low-cost and high performance is an urgent requirement.Iron o...Excessive emissions of nitrogen oxides from flue gas have imposed various detrimental impacts on environment,and the development of deNO_(x) catalysts with low-cost and high performance is an urgent requirement.Iron oxide-based material has been explored for promising deNO_(x) catalysts.However,the unsatisfactory low-temperature activity limits their practical applications.In this study,a series of excellent low-temperature denitrification catalysts(Ha-FeO_(x)/yZS)were prepared by acid treatment of zinc slag,and the mass ratios of Fe to impure ions was regulated by adjusting the acid concentrations.Ha-FeO_(x)/yZS showed high denitrification performance(>90%)in the range of 180–300℃,and the optimal NO conversion and N2 selectivity were higher than 95%at 250℃.Among them,the Ha-FeO_(x)/2ZS synthesized with 2 mol/L HNO3 exhibited the widest temperature window(175–350℃).The excellent denitrification performance of Ha-FeO_(x)/yZS was mainly attributed to the strong interaction between Fe and impurity ions to inhibit the growth of crystals,making Ha-FeO_(x)/yZS with amorphous structure,nice fine particles,large specific surface area,more surface acid sites and high chemisorbed oxygen.The in-situ DRIFT experiments confirmed that the SCR reaction on the Ha-FeO_(x)/yZS followed both Langmuir-Hinshelwood(L-H)mechanism and Eley-Rideal(E-R)mechanism.The present work proposed a high value-added method for the preparation of cost-effective catalysts from zinc slag,which showed a promising application prospect in NO_(x) removal by selective catalytic reduction with ammonia.展开更多
A mixed nitrate (NO_(3)^(–)) and ammonium (NH_(4)^(+)) supply can promote root growth in maize (Zea mays),however,the changes in root morphology and the related physiological mechanism under different N forms are sti...A mixed nitrate (NO_(3)^(–)) and ammonium (NH_(4)^(+)) supply can promote root growth in maize (Zea mays),however,the changes in root morphology and the related physiological mechanism under different N forms are still unclear.Here,maize seedlings were grown hydroponically with three N supplied in three different forms (NO_(3)^(–)only,75/25 NO_(3)^(–)/NH_(4)^(+)and NH_(4)^(+)only).Compared with sole NO_(3)^(–)or NH_(4)^(+),the mixed N supply increased the total root length of maize but did not affect the number of axial roots.The main reason was the increased total lateral root length,while the average lateral root (LR) length in each axle was only slightly increased.In addition,the average LR density of 2nd whorl crown root under mixed N was also increased.Compared with sole nitrate,mixed N could improve the N metabolism of roots (such as the N influx rate,nitrate reductase (NR) and glutamine synthase (GS)enzyme activities and total amino content of the roots).Experiments with exogenously added NR and GS inhibitors suggested that the increase in the average LR length under mixed N was related to the process of N assimilation,and whether the NR mediated NO synthesis participates in this process needs further exploration.Meanwhile,an investigation of the changes in root-shoot ratio and carbon (C) concentration showed that C transportation from shoots to roots may not be the key factor in mediating lateral root elongation,and the changes in the sugar concentration in roots further proved this conclusion.Furthermore,the synthesis and transportation of auxin in axial roots may play a key role in lateral root elongation,in which the expression of ZmPIN1B and ZmPIN9 may be involved in this pathway.This study preliminarily clarified the changes in root morphology and explored the possible physiological mechanism under a mixed N supply in maize,which may provide some theoretical basis for the cultivation of crop varieties with high N efficiency.展开更多
Compared with sole nitrate (NO_(3)^(-)) or sole ammonium (NH_(4)^(+)) supply,mixed nitrogen (N) supply may promote growth of maize seedlings.Previous study suggested that mixed N supply not only increased photosynthes...Compared with sole nitrate (NO_(3)^(-)) or sole ammonium (NH_(4)^(+)) supply,mixed nitrogen (N) supply may promote growth of maize seedlings.Previous study suggested that mixed N supply not only increased photosynthesis rate,but also enhanced leaf growth by increasing auxin synthesis to build a large sink for C and N utilization.However,whether this process depends on N absorption is unknown.Here,maize seedlings were grown hydroponically with three N forms (NO_(3)^(-)only,75/25 NO_(3)^(-)/NH_(4)^(+) and NH_(4)^(+) only).The study results suggested that maize growth rate and N content of shoots under mixed N supply was little different to that under sole NO_(3)^(-)supply at 0–3 d,but was higher than under sole NO_(3)^(-)supply at 6–9 d.^(15)N influx rate under mixed N supply was greater than under sole NO_(3)^(-) or NH_(4)^(+) supply at 6–9 d,although NO_(3)^(-) and NH_(4)^(+) influx under mixed N supply were reduced compared to sole NO_(3)^(-) and NH_(4)^(+) supply,respectively.qRT-PCR determination suggested that the increased N absorption under mixed N supply may be related to the higher expression of NO_(3)^(-) transporters in roots,such as ZmNRT1.1A,ZmNRT1.1B,ZmNRT1.1C,ZmNRT1.2 and ZmNRT1.3,or NH_(4)^(+) absorption transporters,such as Zm AMT1.1A,especially the latter.Furthermore,plants had higher nitrate reductase (NR)glutamine synthase (GS) activity and amino acid content under mixed N supply than when under sole NO_(3)^(-) supply.The experiments with inhibitors of NR reductase and GS synthase further confirmed that N assimilation ability under mixed N supply was necessary to promote maize growth,especially for the reduction of NO_(3)^(-) by NR reductase.This research suggested that the increased processes of NO_(3)^(-)and NH_(4)^(+) assimilation by improving N-absorption ability of roots under mixed N supply may be the main driving force to increase maize growth.展开更多
为研究不同海拔下SCR系统性能,分别在80、90、100 k Pa大气压力下对一台满足国五排放标准的高压共轨柴油机进行性能与排放试验,以研究排气温度、排气流量和海拔变化对NO_(x)转化率和NH_(3)泄漏量的影响。结果表明:在排气流量为350 kg/h...为研究不同海拔下SCR系统性能,分别在80、90、100 k Pa大气压力下对一台满足国五排放标准的高压共轨柴油机进行性能与排放试验,以研究排气温度、排气流量和海拔变化对NO_(x)转化率和NH_(3)泄漏量的影响。结果表明:在排气流量为350 kg/h情况下,NO_(x)转化率随排气温度升高呈现先增后减的趋势,不同温度下NO_(x)转化率最大差值为43.4百分点;NH_(3)泄漏量随着温度的升高大体上呈下降趋势,不同温度下NH_(3)泄漏量最大差值为328×10^(-6);NO_(x)转化率随排气流量升高呈现先增后减的趋势,在250℃时,不同排气流量下NO_(x)转化效率最大相差21.5百分点;NH_(3)泄漏量随排气流量的增大而增加,在250℃时,不同排气流量下NH_(3)泄漏量最大差值为90.8×10^(-6)。相同工况下,海拔越高,NO_(x)转化率越高,NH_(3)泄漏量越小,大气压力为80和100 k Pa下NO_(x)转化率最大相差20.1百分点,NH_(3)泄漏量最大相差54.6×10^(-6)。展开更多
An insufficient amount of NH_(3) (ammonia)will reduce the conversion efficiency of NO_(x),which may lead to excess NO_(x) emissions,resulting in NH3SCR failure.In this article,SCR failure caused by a low NH_(3)NO_(x) ...An insufficient amount of NH_(3) (ammonia)will reduce the conversion efficiency of NO_(x),which may lead to excess NO_(x) emissions,resulting in NH3SCR failure.In this article,SCR failure caused by a low NH_(3)NO_(x) ratio is studied systematically by experiments.The main reasons for a low NH_(3)NO_(x) ratio in SCR include insufficient urea injection,hydrothermal aging of catalysts and urea crystallization.It was found from an insufficient urea injection experiment that with the increase of NH_(3)NO_(x) ratio,the NO_(x) conversion efficiency of the SCR system increased,but the ammonia leakage also increased.The main influencing factors of NO_(x) conversion efficiency are different under different NH3NOx ratios.A flow reactor system was used in the catalyst hydrothermal aging experiment to investigate the effect of hydrothermal aging on catalyst activity.After a 24 h hydrothermal aging experiment at 800℃,the NO_(x) conversion efficiency of the copperbased zeolite catalysts decreased significantly at the boundary of medium and low temperature regions.And the NO_(2)-NO_(x) ratio in the mixture had a significant effect on the catalytic performance.Thermogravimetry coupled to Fourier transform infrared spectroscopy(TGFTIR)was used to analyze the composition of urea deposits in a urea deposits analysis experiment.It was found that the main components of urea deposits were urea and isocyanic acid(HNCO).Preventing HNCO polymerization,especially the formation of CYA,can decrease the formation of urea deposits.展开更多
Ca-type todorokite catalysts were designed and prepared by a simple redox method and applied to the selective reduction of NO_(x) by NH_(3)(NH_(3)-SCR)for the first time.Compared with the Na-type manjiroite prepared b...Ca-type todorokite catalysts were designed and prepared by a simple redox method and applied to the selective reduction of NO_(x) by NH_(3)(NH_(3)-SCR)for the first time.Compared with the Na-type manjiroite prepared by the same method,the todorokite catalysts with different Mn/Ca ratios showed greatly improved catalytic activity for NO_(x) reduction.Among them,Mn8Ca4 catalyst exhibited the best NH_(3)-SCR performance,achieving 90%NO_(x) conversion within temperature range of 70-275℃ and having a high sulphur resistance.Compared to the Na-type manjiroite sample,Ca-type todorokite catalysts possessed an increased size of tunnel,resulting in a larger specific surface area.As increased the amounts of Ca doping,the Na content in Ca-type todorokite catalysts significantly decreased,providing larger amounts of Bronsted acid sites for NH_(3) adsorption to produce NH_(4)^(+).The NH_(4)^(+)species were highly active for reaction with NO+O_(2),playing a determining role in NH_(3)-SCR process at low temperatures.Meanwhile,larger amounts of surface adsorbed oxygen contained over the Ca-doping samples than that over Na-type manjiroite,promoting the oxidation of NO and fast SCR processes.Over the Ca-type todorokite catalysts,furthermore,nitrates produced during the flow of NO+O_(2),were more active for reaction with NH_(3) than that over Na-type manjiroite,benefiting the occurrence of NH_(3)-SCR process.This study provides novel insights into the design of NH_(3)-SCR catalysts with high performance.展开更多
Hydrothermal stability is crucial for the practical application of deNO_(x)catalyst on diesel vehicles,for the selective catalytic reduction of NO_(x)with NH_(3)(NH_(3)-SCR).SnO_(2)-based materials possess superior hy...Hydrothermal stability is crucial for the practical application of deNO_(x)catalyst on diesel vehicles,for the selective catalytic reduction of NO_(x)with NH_(3)(NH_(3)-SCR).SnO_(2)-based materials possess superior hydrothermal stability,which is attractive for the development of NH_(3)-SCR catalyst.In this work,a series of Ce-Nb/SnO_(2)catalysts,with Ce and Nb loading on SnO_(2)support,were prepared by impregnation method.It was found that,the NH_(3)-SCR activities and hydrothermal stabilities of the Ce-Nb/SnO_(2)catalysts significantly varied with the impregnation sequences,and the Ce-Nb(f)/SnO_(2) catalyst that firstly impregnated Nb and then impregnated Ce exhibited the best performance.The characterization results revealed that CeNb(f)/SnO_(2)possessed appropriate acidity and redox capability.Furthermore,the strong synergistic effect between Nb and Sn species stabilized the structure and maintained the dispersion of acid sites.This study may provide a new understanding for the effect of impregnation sequence on activity and hydrothermal stability and a new environmental-friendly NH_(3)-SCR catalyst with potential applications for NO_(x)removal from diesel and hydrogenfueled engines.展开更多
Sm-doped Fe_(2)O_(3)catalysts,with a homogeneous distribution of Sm in Fe_(2)O_(3)nanoparticles,were synthesized using a citric acid-assisted sol-gel method.Kinetic studies show that the reaction rate for NO_(x)reduct...Sm-doped Fe_(2)O_(3)catalysts,with a homogeneous distribution of Sm in Fe_(2)O_(3)nanoparticles,were synthesized using a citric acid-assisted sol-gel method.Kinetic studies show that the reaction rate for NO_(x)reduction using the optimal catalyst(0.06 mol%doping of Sm in Fe_(2)O_(3))was nearly 11 times higher than that for pure Fe_(2)O_(3),when calculated based on specific surface area.Furthermore,the Fe_(0.94)Sm_(0.06)O_(x)catalyst maintains>83%NO_(x)conversion for 168 h at a high space velocity in the presence of SO_(2)and H_(2)O at 250℃.A substantial amount of surface-adsorbed oxygen was generated on the surface of Fe_(0.94)Sm_(0.06)O_(x),which promoted NO oxidation and the subsequent fast reaction between NO_(x)and NH_(3).The adsorption and activation of NH_(3)was also enhanced by Sm doping.In addition,Sm doping facilitated the decomposition of NH_(4)HSO_(4)on the surface of Fe_(0.94)Sm_(0.06)O_(x),resulting in its high activity and stability in the presence of SO_(2)+H_(2)O.展开更多
NH_(3)作为氢能载体,可实现氢能远距离输运。针对NH_(3)燃烧的反应性低、稳定性差、高燃料型NO_(x)排放问题,设计旋流燃烧器和空气分级燃烧室,实验研究功率为5~23 k W的NH_(3)、NH_(3)/CH_(4)扩散火焰NO_(x)排放特性。并采用化学反应器...NH_(3)作为氢能载体,可实现氢能远距离输运。针对NH_(3)燃烧的反应性低、稳定性差、高燃料型NO_(x)排放问题,设计旋流燃烧器和空气分级燃烧室,实验研究功率为5~23 k W的NH_(3)、NH_(3)/CH_(4)扩散火焰NO_(x)排放特性。并采用化学反应器网络(CRN)进行化学动力学模拟,分析排放变化的原因。结果表明:5 kW、Ф_(pri)=1.05的条件下,NH_(3)火焰NO_(x)测量排放最低为114.4×10^(-6)@15%O_(2);随着功率升高,NO_(x)排放增加,且导致燃烧不充分、火焰延长,此时最佳Ф_(pri)提前、燃烧范围减少、NO_(x)进一步增加;本文的CRN更适合模拟预混燃烧的NO_(x)排放,而不是扩散燃烧;功率升高不会改变反应路径,但生成NO的基元反应速率的升高幅度略大于消耗NO的基元反应速率,从而导致NO排放升高.展开更多
基金National Natural Science Foundation of China(21676209)Natural Science Basic Research Program of Shaanxi(2022JQ-328)Postdoctoral Research Foundation of the Xi’an University of Architecture and Technology(19603210120).
文摘Excessive emissions of nitrogen oxides from flue gas have imposed various detrimental impacts on environment,and the development of deNO_(x) catalysts with low-cost and high performance is an urgent requirement.Iron oxide-based material has been explored for promising deNO_(x) catalysts.However,the unsatisfactory low-temperature activity limits their practical applications.In this study,a series of excellent low-temperature denitrification catalysts(Ha-FeO_(x)/yZS)were prepared by acid treatment of zinc slag,and the mass ratios of Fe to impure ions was regulated by adjusting the acid concentrations.Ha-FeO_(x)/yZS showed high denitrification performance(>90%)in the range of 180–300℃,and the optimal NO conversion and N2 selectivity were higher than 95%at 250℃.Among them,the Ha-FeO_(x)/2ZS synthesized with 2 mol/L HNO3 exhibited the widest temperature window(175–350℃).The excellent denitrification performance of Ha-FeO_(x)/yZS was mainly attributed to the strong interaction between Fe and impurity ions to inhibit the growth of crystals,making Ha-FeO_(x)/yZS with amorphous structure,nice fine particles,large specific surface area,more surface acid sites and high chemisorbed oxygen.The in-situ DRIFT experiments confirmed that the SCR reaction on the Ha-FeO_(x)/yZS followed both Langmuir-Hinshelwood(L-H)mechanism and Eley-Rideal(E-R)mechanism.The present work proposed a high value-added method for the preparation of cost-effective catalysts from zinc slag,which showed a promising application prospect in NO_(x) removal by selective catalytic reduction with ammonia.
基金supported by the National Natural Science Foundation of China(31421092)the Central Publicinterest Scientific Institution Basal Research Fund,China(1610232023023)。
文摘A mixed nitrate (NO_(3)^(–)) and ammonium (NH_(4)^(+)) supply can promote root growth in maize (Zea mays),however,the changes in root morphology and the related physiological mechanism under different N forms are still unclear.Here,maize seedlings were grown hydroponically with three N supplied in three different forms (NO_(3)^(–)only,75/25 NO_(3)^(–)/NH_(4)^(+)and NH_(4)^(+)only).Compared with sole NO_(3)^(–)or NH_(4)^(+),the mixed N supply increased the total root length of maize but did not affect the number of axial roots.The main reason was the increased total lateral root length,while the average lateral root (LR) length in each axle was only slightly increased.In addition,the average LR density of 2nd whorl crown root under mixed N was also increased.Compared with sole nitrate,mixed N could improve the N metabolism of roots (such as the N influx rate,nitrate reductase (NR) and glutamine synthase (GS)enzyme activities and total amino content of the roots).Experiments with exogenously added NR and GS inhibitors suggested that the increase in the average LR length under mixed N was related to the process of N assimilation,and whether the NR mediated NO synthesis participates in this process needs further exploration.Meanwhile,an investigation of the changes in root-shoot ratio and carbon (C) concentration showed that C transportation from shoots to roots may not be the key factor in mediating lateral root elongation,and the changes in the sugar concentration in roots further proved this conclusion.Furthermore,the synthesis and transportation of auxin in axial roots may play a key role in lateral root elongation,in which the expression of ZmPIN1B and ZmPIN9 may be involved in this pathway.This study preliminarily clarified the changes in root morphology and explored the possible physiological mechanism under a mixed N supply in maize,which may provide some theoretical basis for the cultivation of crop varieties with high N efficiency.
基金supported by the National Basic Research Program of China (2015CB150402)the National Natural Science Foundation of China (31672221 and 31421092)the Science Foundation for Young Scholars of Tobacco Research Institute of Chinese Academy of Agricultural Sciences (2022C03 and 20211302)。
文摘Compared with sole nitrate (NO_(3)^(-)) or sole ammonium (NH_(4)^(+)) supply,mixed nitrogen (N) supply may promote growth of maize seedlings.Previous study suggested that mixed N supply not only increased photosynthesis rate,but also enhanced leaf growth by increasing auxin synthesis to build a large sink for C and N utilization.However,whether this process depends on N absorption is unknown.Here,maize seedlings were grown hydroponically with three N forms (NO_(3)^(-)only,75/25 NO_(3)^(-)/NH_(4)^(+) and NH_(4)^(+) only).The study results suggested that maize growth rate and N content of shoots under mixed N supply was little different to that under sole NO_(3)^(-)supply at 0–3 d,but was higher than under sole NO_(3)^(-)supply at 6–9 d.^(15)N influx rate under mixed N supply was greater than under sole NO_(3)^(-) or NH_(4)^(+) supply at 6–9 d,although NO_(3)^(-) and NH_(4)^(+) influx under mixed N supply were reduced compared to sole NO_(3)^(-) and NH_(4)^(+) supply,respectively.qRT-PCR determination suggested that the increased N absorption under mixed N supply may be related to the higher expression of NO_(3)^(-) transporters in roots,such as ZmNRT1.1A,ZmNRT1.1B,ZmNRT1.1C,ZmNRT1.2 and ZmNRT1.3,or NH_(4)^(+) absorption transporters,such as Zm AMT1.1A,especially the latter.Furthermore,plants had higher nitrate reductase (NR)glutamine synthase (GS) activity and amino acid content under mixed N supply than when under sole NO_(3)^(-) supply.The experiments with inhibitors of NR reductase and GS synthase further confirmed that N assimilation ability under mixed N supply was necessary to promote maize growth,especially for the reduction of NO_(3)^(-) by NR reductase.This research suggested that the increased processes of NO_(3)^(-)and NH_(4)^(+) assimilation by improving N-absorption ability of roots under mixed N supply may be the main driving force to increase maize growth.
文摘为研究不同海拔下SCR系统性能,分别在80、90、100 k Pa大气压力下对一台满足国五排放标准的高压共轨柴油机进行性能与排放试验,以研究排气温度、排气流量和海拔变化对NO_(x)转化率和NH_(3)泄漏量的影响。结果表明:在排气流量为350 kg/h情况下,NO_(x)转化率随排气温度升高呈现先增后减的趋势,不同温度下NO_(x)转化率最大差值为43.4百分点;NH_(3)泄漏量随着温度的升高大体上呈下降趋势,不同温度下NH_(3)泄漏量最大差值为328×10^(-6);NO_(x)转化率随排气流量升高呈现先增后减的趋势,在250℃时,不同排气流量下NO_(x)转化效率最大相差21.5百分点;NH_(3)泄漏量随排气流量的增大而增加,在250℃时,不同排气流量下NH_(3)泄漏量最大差值为90.8×10^(-6)。相同工况下,海拔越高,NO_(x)转化率越高,NH_(3)泄漏量越小,大气压力为80和100 k Pa下NO_(x)转化率最大相差20.1百分点,NH_(3)泄漏量最大相差54.6×10^(-6)。
基金the National Key Research&Development Program of China(No.2017YFC0211202).Authors would like to thank editors and anonymous reviewers for their suggestions to improve the paper.
文摘An insufficient amount of NH_(3) (ammonia)will reduce the conversion efficiency of NO_(x),which may lead to excess NO_(x) emissions,resulting in NH3SCR failure.In this article,SCR failure caused by a low NH_(3)NO_(x) ratio is studied systematically by experiments.The main reasons for a low NH_(3)NO_(x) ratio in SCR include insufficient urea injection,hydrothermal aging of catalysts and urea crystallization.It was found from an insufficient urea injection experiment that with the increase of NH_(3)NO_(x) ratio,the NO_(x) conversion efficiency of the SCR system increased,but the ammonia leakage also increased.The main influencing factors of NO_(x) conversion efficiency are different under different NH3NOx ratios.A flow reactor system was used in the catalyst hydrothermal aging experiment to investigate the effect of hydrothermal aging on catalyst activity.After a 24 h hydrothermal aging experiment at 800℃,the NO_(x) conversion efficiency of the copperbased zeolite catalysts decreased significantly at the boundary of medium and low temperature regions.And the NO_(2)-NO_(x) ratio in the mixture had a significant effect on the catalytic performance.Thermogravimetry coupled to Fourier transform infrared spectroscopy(TGFTIR)was used to analyze the composition of urea deposits in a urea deposits analysis experiment.It was found that the main components of urea deposits were urea and isocyanic acid(HNCO).Preventing HNCO polymerization,especially the formation of CYA,can decrease the formation of urea deposits.
基金supported by Self-deployed Projects of Ganjiang Innovation Academy,Chinese Academy of Sciences(No.E055C003)the National Natural Science Foundation of China(Nos.U20B6004 and 22072179)
文摘Ca-type todorokite catalysts were designed and prepared by a simple redox method and applied to the selective reduction of NO_(x) by NH_(3)(NH_(3)-SCR)for the first time.Compared with the Na-type manjiroite prepared by the same method,the todorokite catalysts with different Mn/Ca ratios showed greatly improved catalytic activity for NO_(x) reduction.Among them,Mn8Ca4 catalyst exhibited the best NH_(3)-SCR performance,achieving 90%NO_(x) conversion within temperature range of 70-275℃ and having a high sulphur resistance.Compared to the Na-type manjiroite sample,Ca-type todorokite catalysts possessed an increased size of tunnel,resulting in a larger specific surface area.As increased the amounts of Ca doping,the Na content in Ca-type todorokite catalysts significantly decreased,providing larger amounts of Bronsted acid sites for NH_(3) adsorption to produce NH_(4)^(+).The NH_(4)^(+)species were highly active for reaction with NO+O_(2),playing a determining role in NH_(3)-SCR process at low temperatures.Meanwhile,larger amounts of surface adsorbed oxygen contained over the Ca-doping samples than that over Na-type manjiroite,promoting the oxidation of NO and fast SCR processes.Over the Ca-type todorokite catalysts,furthermore,nitrates produced during the flow of NO+O_(2),were more active for reaction with NH_(3) than that over Na-type manjiroite,benefiting the occurrence of NH_(3)-SCR process.This study provides novel insights into the design of NH_(3)-SCR catalysts with high performance.
基金supported by the National Natural Science Foundation of China(Nos.52225004 and 22276182)the National Key R&D Program of China(Nos.2022YFC3701804 and 2022YFC3704400)the Science and Technology Innovation“2025”major program in Ningbo(No.2020Z103)。
文摘Hydrothermal stability is crucial for the practical application of deNO_(x)catalyst on diesel vehicles,for the selective catalytic reduction of NO_(x)with NH_(3)(NH_(3)-SCR).SnO_(2)-based materials possess superior hydrothermal stability,which is attractive for the development of NH_(3)-SCR catalyst.In this work,a series of Ce-Nb/SnO_(2)catalysts,with Ce and Nb loading on SnO_(2)support,were prepared by impregnation method.It was found that,the NH_(3)-SCR activities and hydrothermal stabilities of the Ce-Nb/SnO_(2)catalysts significantly varied with the impregnation sequences,and the Ce-Nb(f)/SnO_(2) catalyst that firstly impregnated Nb and then impregnated Ce exhibited the best performance.The characterization results revealed that CeNb(f)/SnO_(2)possessed appropriate acidity and redox capability.Furthermore,the strong synergistic effect between Nb and Sn species stabilized the structure and maintained the dispersion of acid sites.This study may provide a new understanding for the effect of impregnation sequence on activity and hydrothermal stability and a new environmental-friendly NH_(3)-SCR catalyst with potential applications for NO_(x)removal from diesel and hydrogenfueled engines.
文摘Sm-doped Fe_(2)O_(3)catalysts,with a homogeneous distribution of Sm in Fe_(2)O_(3)nanoparticles,were synthesized using a citric acid-assisted sol-gel method.Kinetic studies show that the reaction rate for NO_(x)reduction using the optimal catalyst(0.06 mol%doping of Sm in Fe_(2)O_(3))was nearly 11 times higher than that for pure Fe_(2)O_(3),when calculated based on specific surface area.Furthermore,the Fe_(0.94)Sm_(0.06)O_(x)catalyst maintains>83%NO_(x)conversion for 168 h at a high space velocity in the presence of SO_(2)and H_(2)O at 250℃.A substantial amount of surface-adsorbed oxygen was generated on the surface of Fe_(0.94)Sm_(0.06)O_(x),which promoted NO oxidation and the subsequent fast reaction between NO_(x)and NH_(3).The adsorption and activation of NH_(3)was also enhanced by Sm doping.In addition,Sm doping facilitated the decomposition of NH_(4)HSO_(4)on the surface of Fe_(0.94)Sm_(0.06)O_(x),resulting in its high activity and stability in the presence of SO_(2)+H_(2)O.
文摘NH_(3)作为氢能载体,可实现氢能远距离输运。针对NH_(3)燃烧的反应性低、稳定性差、高燃料型NO_(x)排放问题,设计旋流燃烧器和空气分级燃烧室,实验研究功率为5~23 k W的NH_(3)、NH_(3)/CH_(4)扩散火焰NO_(x)排放特性。并采用化学反应器网络(CRN)进行化学动力学模拟,分析排放变化的原因。结果表明:5 kW、Ф_(pri)=1.05的条件下,NH_(3)火焰NO_(x)测量排放最低为114.4×10^(-6)@15%O_(2);随着功率升高,NO_(x)排放增加,且导致燃烧不充分、火焰延长,此时最佳Ф_(pri)提前、燃烧范围减少、NO_(x)进一步增加;本文的CRN更适合模拟预混燃烧的NO_(x)排放,而不是扩散燃烧;功率升高不会改变反应路径,但生成NO的基元反应速率的升高幅度略大于消耗NO的基元反应速率,从而导致NO排放升高.