期刊文献+
共找到8,315篇文章
< 1 2 250 >
每页显示 20 50 100
Novel umami peptides from two Termitomyces mushrooms and molecular docking to the taste receptor T1R1/T1R3 被引量:3
1
作者 Lanyun Zhang Li Zhang +3 位作者 Jesus Pérez-Moreno Lu Bin Fengming Zhang Fuqiang Yu 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期1055-1064,共10页
Wild edible Termitomyces mushrooms are popular in Southwest China and umami is important flavor qualities of edible mushrooms.This study aimed to understand the umami taste of Termitomyces intermedius and Termitomyces... Wild edible Termitomyces mushrooms are popular in Southwest China and umami is important flavor qualities of edible mushrooms.This study aimed to understand the umami taste of Termitomyces intermedius and Termitomyces aff.bulborhizus.Ten umami peptides from aqueous extracts were separated using a Sephadex G-15 gel filtration chromatography.The intense umami fraction was evaluated by both sensory evaluation and electronic tongue.They were identified as KLNDAQAPK,DSTDEKFLR,VGKGAHLSGEH,MLKKKKLA,SLGFGGPPGY,TVATFSSSTKPDD,AMDDDEADLLLLAM,VEDEDEKPKEK,SPEEKKEEET and PEGADKPNK.Seven peptides,except VEDEDEKPKEK,SPEEKKEEET and PEGADKPNK were selectively synthesized to verify their taste characteristics.All these 10 peptides had umami or salt taste.The 10 peptides were conducted by molecular docking to study their interaction with identified peptides and the umami taste receptor T1R1/T1R3.All these 10 peptides perfectly docked the active residues in the T1R3 subunit.Our results provide theoretical basis for the umami taste and address the umami mechanism of two wild edible Termitomyces mushrooms. 展开更多
关键词 TERMITOMYCES Non-volatile flavor compounds Umami peptides Taste characteristics molecular docking
下载PDF
Molecular Mechanism and Molecular Design of Lubricating Oil Antioxidants 被引量:1
2
作者 Su Shuo Long Jun +2 位作者 Duan Qinghua Zhou Han Zhao Yi 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第2期135-145,共11页
To overcome the limitations of traditional experimental“trial and error”methods in lubricant additive design,a new molecular design method based on molecular structure parameters is established here.The molecular me... To overcome the limitations of traditional experimental“trial and error”methods in lubricant additive design,a new molecular design method based on molecular structure parameters is established here.The molecular mechanism of the antioxidant reaction of hindered phenol,diphenylamine,and alkyl sulfide are studied via molecular simulations.Calculation results show that the strong electron-donating ability and high hydrogen-donating activity of the antioxidant molecule and the low hydrogen-abstracting activity of free radicals formed after dehydrogenation are the internal molecular causes of the shielding of phenol and diphenylamine from scavenging peroxy free radicals,and the strong electron-donating ability is the internal molecular cause of the high activity of thioether in decomposing alkyl hydrogen peroxide.Based on this antioxidant molecular mechanism,a molecular design rule of antioxidant is proposed,namely“high EHOMO,large Q(S),low bond dissociation energy BDE(O—H)and BDE(N—H)”.Two new antioxidants,PAS-I and PAS-II,are designed and prepared by chemical bonding of hindered phenol,diphenylamine,and sulfur atoms.Experimental results show that these antioxidants both have excellent antioxidant effects in lubricating oil,and that PAS-II is the superior antioxidant,consistent with theoretical predictions. 展开更多
关键词 lubricating oil ANTIOXIDANT molecular mechanism molecular design antioxidant performance
下载PDF
Facile synthesis of Cu-doped manganese oxide octahedral molecular sieve for the efficient degradation of sulfamethoxazole via peroxymonosulfate activation 被引量:1
3
作者 Yuhua Qiu Yingping Huang +2 位作者 Yanlan Wang Xiang Liu Di Huang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第12期2770-2780,共11页
Advanced processes for peroxymonosulfate(PMS)-based oxidation are efficient in eliminating toxic and refractory organic pol-lutants from sewage.The activation of electron-withdrawing HSO_(5)^(-)releases reactive speci... Advanced processes for peroxymonosulfate(PMS)-based oxidation are efficient in eliminating toxic and refractory organic pol-lutants from sewage.The activation of electron-withdrawing HSO_(5)^(-)releases reactive species,including sulfate radical(·SO_(4)^(-)),hydroxyl radical(·OH),superoxide radical(·O_(2)^(-)),and singlet oxygen(1O_(2)),which can induce the degradation of organic contaminants.In this work,we synthesized a variety of M-OMS-2 nanorods(M=Co,Ni,Cu,Fe)by doping Co^(2+),Ni^(2+),Cu^(2+),or Fe^(3+)into manganese oxide oc-tahedral molecular sieve(OMS-2)to efficiently remove sulfamethoxazole(SMX)via PMS activation.The catalytic performance of M-OMS-2 in SMX elimination via PMS activation was assessed.The nanorods obtained in decreasing order of SMX removal rate were Cu-OMS-2(96.40%),Co-OMS-2(88.00%),Ni-OMS-2(87.20%),Fe-OMS-2(35.00%),and OMS-2(33.50%).Then,the kinetics and struc-ture-activity relationship of the M-OMS-2 nanorods during the elimination of SMX were investigated.The feasible mechanism underly-ing SMX degradation by the Cu-OMS-2/PMS system was further investigated with a quenching experiment,high-resolution mass spec-troscopy,and electron paramagnetic resonance.Results showed that SMX degradation efficiency was enhanced in seawater and tap water,demonstrating the potential application of Cu-OMS-2/PMS system in sewage treatment. 展开更多
关键词 SULFAMETHOXAZOLE manganese oxide octahedral molecular sieve PEROXYMONOSULFATE sewage treatment COPPER
下载PDF
Analysis of CH_(4) and H_(2) Adsorption on Heterogeneous Shale Surfaces Using aMolecular Dynamics Approach 被引量:1
4
作者 Surajudeen Sikiru Hassan Soleimani +2 位作者 Amir Rostami Mohammed Falalu Hamza Lukmon Owolabi Afolabi 《Fluid Dynamics & Materials Processing》 EI 2024年第1期31-44,共14页
Determining the adsorption of shale gas on complex surfaces remains a challenge in molecular simulation studies.Difficulties essentially stem from the need to create a realistic shale structure model in terms of miner... Determining the adsorption of shale gas on complex surfaces remains a challenge in molecular simulation studies.Difficulties essentially stem from the need to create a realistic shale structure model in terms of mineral heterogeneityand multiplicity.Moreover,precise characterization of the competitive adsorption of hydrogen andmethane in shale generally requires the experimental determination of the related adsorptive capacity.In thisstudy,the adsorption of adsorbates,methane(CH_(4)),and hydrogen(H_(2))on heterogeneous shale surface modelsof Kaolinite,Orthoclase,Muscovite,Mica,C_(60),and Butane has been simulated in the frame of a moleculardynamic’s numerical technique.The results show that these behaviors are influenced by pressure and potentialenergy.On increasing the pressure from 500 to 2000 psi,the sorption effect for CH_(4)significantly increasesbut shows a decline at a certain stage(if compared to H_(2)).The research findings also indicate that raw shalehas a higher capacity to adsorb CH_(4)compared to hydrogen.However,in shale,this difference is negligible. 展开更多
关键词 Shale gas ADSORPTION METHANE hydrogen molecular dynamic SORPTION
下载PDF
Molecular mechanisms underlying microglial sensing and phagocytosis in synaptic pruning 被引量:1
5
作者 Anran Huo Jiali Wang +6 位作者 Qi Li Mengqi Li Yuwan Qi Qiao Yin Weifeng Luo Jijun Shi Qifei Cong 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第6期1284-1290,共7页
Microglia are the main non-neuronal cells in the central nervous system that have important roles in brain development and functional connectivity of neural circuits.In brain physiology,highly dynamic microglial proce... Microglia are the main non-neuronal cells in the central nervous system that have important roles in brain development and functional connectivity of neural circuits.In brain physiology,highly dynamic microglial processes are facilitated to sense the surrounding environment and stimuli.Once the brain switches its functional states,microglia are recruited to specific sites to exert their immune functions,including the release of cytokines and phagocytosis of cellular debris.The crosstalk of microglia between neurons,neural stem cells,endothelial cells,oligodendrocytes,and astrocytes contributes to their functions in synapse pruning,neurogenesis,vascularization,myelination,and blood-brain barrier permeability.In this review,we highlight the neuron-derived“find-me,”“eat-me,”and“don't eat-me”molecular signals that drive microglia in response to changes in neuronal activity for synapse refinement during brain development.This review reveals the molecular mechanism of neuron-microglia interaction in synaptic pruning and presents novel ideas for the synaptic pruning of microglia in disease,thereby providing important clues for discovery of target drugs and development of nervous system disease treatment methods targeting synaptic dysfunction. 展开更多
关键词 COMPLEMENT immune signals microglia molecular signal synapse elimination synapse formation synapse refinement synaptic pruning
下载PDF
Risk stratification for radioactive iodine refractoriness using molecular alterations in distant metastatic differentiated thyroid cancer 被引量:1
6
作者 Zhuanzhuan Mu Xin Zhang +9 位作者 Dongquan Liang Jugao Fang Ge Chen Wenting Guo Di Sun Yuqing Sun Zhentian Kai Lisha Huang Jun Liang Yansong Lin 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2024年第1期25-35,共11页
Objective: Patients with radioactive iodine-refractory differentiated thyroid cancer(RAIR-DTC) are often diagnosed with delay and constrained to limited treatment options. The correlation between RAI refractoriness an... Objective: Patients with radioactive iodine-refractory differentiated thyroid cancer(RAIR-DTC) are often diagnosed with delay and constrained to limited treatment options. The correlation between RAI refractoriness and the underlying genetic characteristics has not been extensively studied.Methods: Adult patients with distant metastatic DTC were enrolled and assigned to undergo next-generation sequencing of a customized 26-gene panel(Thyro Lead). Patients were classified into RAIR-DTC or non-RAIR groups to determine the differences in clinicopathological and molecular characteristics. Molecular risk stratification(MRS) was constructed based on the association between molecular alterations identified and RAI refractoriness, and the results were classified as high, intermediate or low MRS.Results: A total of 220 patients with distant metastases were included, 63.2% of whom were identified as RAIRDTC. Genetic alterations were identified in 90% of all the patients, with BRAF(59.7% vs. 17.3%), TERT promoter(43.9% vs. 7.4%), and TP53 mutations(11.5% vs. 3.7%) being more prevalent in the RAIR-DTC group than in the non-RAIR group, except for RET fusions(15.8% vs. 39.5%), which had the opposite pattern. BRAF and TERT promoter are independent predictors of RAIR-DTC, accounting for 67.6% of patients with RAIR-DTC. MRS was strongly associated with RAI refractoriness(P<0.001), with an odds ratio(OR) of high to low MRS of 7.52 [95%confidence interval(95% CI), 3.96-14.28;P<0.001] and an OR of intermediate to low MRS of 3.20(95% CI,1.01-10.14;P=0.041).Conclusions: Molecular alterations were associated with RAI refractoriness, with BRAF and TERT promoter mutations being the predominant contributors, followed by TP53 and DICER1 mutations. MRS might serve as a valuable tool for both prognosticating clinical outcomes and directing precision-based therapeutic interventions. 展开更多
关键词 Differentiated thyroid cancer distant metastases genetic alterations RAI refractoriness molecular risk stratification
下载PDF
Development of in situ characterization techniques in molecular beam epitaxy 被引量:1
7
作者 Chao Shen Wenkang Zhan +7 位作者 Manyang Li Zhenyu Sun Jian Tang Zhaofeng Wu Chi Xu Bo Xu Chao Zhao Zhanguo Wang 《Journal of Semiconductors》 EI CAS CSCD 2024年第3期9-32,共24页
Ex situ characterization techniques in molecular beam epitaxy(MBE)have inherent limitations,such as being prone to sample contamination and unstable surfaces during sample transfer from the MBE chamber.In recent years... Ex situ characterization techniques in molecular beam epitaxy(MBE)have inherent limitations,such as being prone to sample contamination and unstable surfaces during sample transfer from the MBE chamber.In recent years,the need for improved accuracy and reliability in measurement has driven the increasing adoption of in situ characterization techniques.These techniques,such as reflection high-energy electron diffraction,scanning tunneling microscopy,and X-ray photoelectron spectroscopy,allow direct observation of film growth processes in real time without exposing the sample to air,hence offering insights into the growth mechanisms of epitaxial films with controlled properties.By combining multiple in situ characterization techniques with MBE,researchers can better understand film growth processes,realizing novel materials with customized properties and extensive applications.This review aims to overview the benefits and achievements of in situ characterization techniques in MBE and their applications for material science research.In addition,through further analysis of these techniques regarding their challenges and potential solutions,particularly highlighting the assistance of machine learning to correlate in situ characterization with other material information,we hope to provide a guideline for future efforts in the development of novel monitoring and control schemes for MBE growth processes with improved material properties. 展开更多
关键词 epitaxial growth thin film in situ characterization molecular beam epitaxy(MBE)
下载PDF
Distinct molecular targets of ProEGCG from EGCG and superior inhibition of angiogenesis signaling pathways for treatment of endometriosis
8
作者 Sze Wan Hung Massimiliano Gaetani +12 位作者 Yiran Li Zhouyurong Tan Xu Zheng Ruizhe Zhang Yang Ding Gene Chi Wai Man Tao Zhang Yi Song Yao Wang Jacqueline Pui Wah Chung Tak Hang Chan Roman A.Zubarev Chi Chiu Wang 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第1期100-114,共15页
Endometriosis is a common chronic gynecological disease with endometrial cell implantation outside the uterus.Angiogenesis is a major pathophysiology in endometriosis.Our previous studies have demonstrated that the pr... Endometriosis is a common chronic gynecological disease with endometrial cell implantation outside the uterus.Angiogenesis is a major pathophysiology in endometriosis.Our previous studies have demonstrated that the prodrug of epigallocatechin gallate(ProEGCG)exhibits superior anti-endometriotic and anti-angiogenic effects compared to epigallocatechin gallate(EGCG).However,their direct binding targets and underlying mechanisms for the differential effects remain unknown.In this study,we demonstrated that oral ProEGCG can be effective in preventing and treating endometriosis.Additionally,1D and 2D Proteome Integral Solubility Alteration assay-based chemical proteomics identified metadherin(MTDH)and PX domain containing serine/threonine kinase-like(PXK)as novel binding targets of EGCG and ProEGCG,respectively.Computational simulation and BioLayer interferometry were used to confirm their binding affinity.Our results showed that MTDH-EGCG inhibited protein kinase B(Akt)-mediated angiogenesis,while PXK-ProEGCG inhibited epidermal growth factor(EGF)-mediated angiogenesis via the EGF/hypoxia-inducible factor(HIF-1a)/vascular endothelial growth factor(VEGF)pathway.In vitro and in vivo knockdown assays and microvascular network imaging further confirmed the involvement of these signaling pathways.Moreover,our study demonstrated that ProEGCG has superior therapeutic effects than EGCG by targeting distinct signal transduction pathways and may act as a novel antiangiogenic therapy for endometriosis. 展开更多
关键词 molecular targets ProEGCG EGCG ANGIOGENESIS TREATMENT ENDOMETRIOSIS
下载PDF
Molecular phylogeny and taxonomy of Phlomoides(Lamiaceae subfamily Lamioideae)in China:Insights from molecular and morphological data
9
作者 Yue Zhao Ya-Ping Chen +8 位作者 Bryan T.Drew Fei Zhao Maryam Almasi Orzimat T.Turginov Jin-Fei Xiao Abdul G.Karimi Yasaman Salmaki Xiang-Qin Yu Chun-Lei Xiang 《Plant Diversity》 SCIE CAS CSCD 2024年第4期462-475,共14页
Phlomoides,with 150-170 species,is the second largest and perhaps most taxonomically challenging genus within the subfamily Lamioideae(Lamiaceae).With about 60 species,China is one of three major biodiversity centers ... Phlomoides,with 150-170 species,is the second largest and perhaps most taxonomically challenging genus within the subfamily Lamioideae(Lamiaceae).With about 60 species,China is one of three major biodiversity centers of Phlomoides.Although some Phlomoides species from China have been included in previous molecular phylogenetic studies,a robust and broad phylogeny of this lineage has yet to be completed.Moreover,given the myriad new additions to the genus,the existing infrageneric classification needs to be evaluated and revised.Here,we combine molecular and morphological data to investigate relationships within Phlomoides,with a focus on Chinese species.We observed that plastid DNA sequences can resolve relationships within Phlomoides better than nuclear ribosomal internal and external transcribed spacer regions(nrITS and nrETS).Molecular phylogenetic analyses confirm the monophyly of Phlomoides,but most previously defined infrageneric groups are not monophyletic.In addition,morphological analysis demonstrates the significant taxonomic value of eight characters to the genus.Based on our molecular phylogenetic analyses and morphological data,we establish a novel section Notochaete within Phlomoides,and propose three new combinations as well as three new synonyms.This study presents the first molecular phylogenetic analyses of Phlomoides in which taxa representative of the entire genus are included,and highlights the phylogenetic and taxonomic value of several morphological characters from species of Phlomoides from China.Our study suggests that a taxonomic revision and reclassification for the entire genus is necessary in the future. 展开更多
关键词 Lamioideae molecular phylogenetics MORPHOLOGY Phlomideae TAXONOMY
下载PDF
Probing the interaction between asphaltene-wax and its effects on the crystallization behavior of waxes in heavy oil via molecular dynamics simulation
10
作者 Yong Hu Xi Lu +3 位作者 Hai-Bo Wang Ji-Chao Fang Yi-Ning Wu JianFang Sun 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2839-2848,共10页
High content of asphaltenes and waxes leads to the high pour point and the poor flowability of heavy oil,which is adverse to its efficient development and its transportation in pipe.Understanding the interaction mecha... High content of asphaltenes and waxes leads to the high pour point and the poor flowability of heavy oil,which is adverse to its efficient development and its transportation in pipe.Understanding the interaction mechanism between asphaltene-wax is crucial to solve these problems,but it is still unclear.In this paper,molecular dynamics simulation was used to investigate the interaction between asphaltenewax and its effects on the crystallization behavior of waxes in heavy oil.Results show that molecules in pure wax are arranged in a paralleled geometry.But wax molecules in heavy oil,which are close to the surface of asphaltene aggregates,are bent and arranged irregularly.When the mass fraction of asphaltenes in asphaltene-wax system(ω_(asp))is 0-25 wt%,the attraction among wax molecules decreases and the bend degree of wax molecules increases with the increase ofω_(asp).Theω_(asp)increases from 0 to 25 wt%,and the attraction between asphaltene-wax is stronger than that among waxes.This causes that the wax precipitation point changes from 353 to 333 K.While theω_(asp)increases to 50 wt%,wax molecules are more dispersed owing to the steric hindrance of asphaltene aggregates,and the interaction among wax molecules transforms from attraction to repulsion.It causes that the ordered crystal structure of waxes can't be formed at normal temperature.Simultaneously,the asphaltene,with the higher molecular weight or the more hetero atoms,has more obvious inhibition to the formation of wax crystals.Besides,resins also have an obvious inhibition on the wax crystal due to the formation of asphalteneresin aggregates with a larger radius.Our results reveal the interaction mechanism between asphaltene-wax,and provide useful guidelines for the development of heavy oil. 展开更多
关键词 Heavy oil Interaction mechanism ASPHALTENES Waxes molecular dynamics
下载PDF
Absorption characteristics,model,and molecular mechanism of hydrogen sulfide in morpholine acetate aqueous solution
11
作者 Hongwei Jin Yun Teng +8 位作者 Kangkang Li Zhou Feng Zhonghao Li Shiqi Qu Hongzhi Xia Huanong Cheng Yugang Li Xinshun Tan Shiqing Zheng 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期125-135,共11页
The solubility of H_(2)S was measured in solutions of N-butyl-N-methylmorpholine acetate([Bmmorp][Ac])containing 20%-40%(mass)water at experimental temperatures ranged from 298.15 to 328.15 K and pressures up to 320 k... The solubility of H_(2)S was measured in solutions of N-butyl-N-methylmorpholine acetate([Bmmorp][Ac])containing 20%-40%(mass)water at experimental temperatures ranged from 298.15 to 328.15 K and pressures up to 320 k Pa.The total solubility of H_(2)S increased with higher temperatures,lower pressures,and reduced water content.The reaction equilibrium thermodynamic model was used to correlate the solubility data.The results indicate that the chemical reaction equilibrium constant decrease with increasing water content and temperature,whereas Henry constant increase with increasing water content and temperature.Compared with other ionic liquids,H_(2)S exhibits a higher physical absorption enthalpy and a lower chemical absorption enthalpy in[Bmmorp][Ac]aqueous solution.This suggests that[Bmmorp][Ac]has a strong physical affinity for H_(2)S and low energy requirement for desorption.Quantum chemical methods were used to investigate the molecular mechanism of H_(2)S absorption in ionic liquids.The interaction energy analysis revealed that the binding of H_(2)S with the ionic liquid in a1:2 ratio is more stable.Detailed analyses by the methods of the interaction region indicator and the atoms in molecules were conducted to the interactions between H_(2)S and the ionic liquid. 展开更多
关键词 Ionic liquid Hydrogen sulfide MODEL SOLUBILITY molecular mechanism
下载PDF
Comprehensive understanding of glioblastoma molecular phenotypes:classification,characteristics,and transition
12
作者 Can Xu Pengyu Hou +7 位作者 Xiang Li Menglin Xiao Ziqi Zhang Ziru Li Jianglong Xu Guoming Liu Yanli Tan Chuan Fang 《Cancer Biology & Medicine》 SCIE CAS CSCD 2024年第5期363-381,共19页
Among central nervous system-associated malignancies,glioblastoma(GBM)is the most common and has the highest mortality rate.The high heterogeneity of GBM cell types and the complex tumor microenvironment frequently le... Among central nervous system-associated malignancies,glioblastoma(GBM)is the most common and has the highest mortality rate.The high heterogeneity of GBM cell types and the complex tumor microenvironment frequently lead to tumor recurrence and sudden relapse in patients treated with temozolomide.In precision medicine,research on GBM treatment is increasingly focusing on molecular subtyping to precisely characterize the cellular and molecular heterogeneity,as well as the refractory nature of GBM toward therapy.Deep understanding of the different molecular expression patterns of GBM subtypes is critical.Researchers have recently proposed tetra fractional or tripartite methods for detecting GBM molecular subtypes.The various molecular subtypes of GBM show significant differences in gene expression patterns and biological behaviors.These subtypes also exhibit high plasticity in their regulatory pathways,oncogene expression,tumor microenvironment alterations,and differential responses to standard therapy.Herein,we summarize the current molecular typing scheme of GBM and the major molecular/genetic characteristics of each subtype.Furthermore,we review the mesenchymal transition mechanisms of GBM under various regulators. 展开更多
关键词 GLIOBLASTOMA molecular phenotype CLASSIFICATION CHARACTERISTIC mesenchymal transition
下载PDF
Molecular insights into oil detachment from hydrophobic quartz surfaces in clay-hosted nanopores during steam-surfactant co-injection
13
作者 Ben-Jie-Ming Liu Xuan-Tong Lei +1 位作者 Mohammadali Ahmadi Zhangxin Chen 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2457-2468,共12页
Thermal recovery techniques for producing oil sands have substantial environmental impacts.Surfactants can efficiently improve thermal bitumen recovery and reduce the required amount of steam.Such a technique requires... Thermal recovery techniques for producing oil sands have substantial environmental impacts.Surfactants can efficiently improve thermal bitumen recovery and reduce the required amount of steam.Such a technique requires solid knowledge about the interaction mechanism between surfactants,bitumen,water,and rock at the nanoscale level.In particular,oil sands ores have extremely complex mineralogy as they contain many clay minerals(montmorillonite,illite,kaolinite).In this study,molecular dynamics simulation is carried out to elucidate the unclear mechanisms of clay minerals contributing to the bitumen recovery under a steam-anionic surfactant co-injection process.We found that the clay content significantly influenced an oil detachment process from hydrophobic quartz surfaces.Results reveal that the presence of montmorillonite,illite,and the siloxane surface of kaolinite in nanopores can enhance the oil detachment process from the hydrophobic surfaces because surfactant molecules have a stronger tendency to interact with bitumen and quartz.Conversely,the gibbsite surfaces of kaolinite curb the oil detachment process.Through interaction energy analysis,the siloxane surfaces of kaolinite result in the most straightforward oil detachment process.In addition,we found that the clay type presented in nanopores affected the wettability of the quartz surfaces.The quartz surfaces associated with the gibbsite surfaces of kaolinite show the strongest hydrophilicity.By comparing previous experimental findings with the results of molecular dynamics(MD)simulations,we observed consistent wetting characteristics.This alignment serves to validate the reliability of the simulation outcomes.The outcome of this paper makes up for the lack of knowledge of a surfactant-assisted bitumen recovery process and provides insights for further in-situ bitumen production engineering designs. 展开更多
关键词 Clay minerals BITUMEN Contact angle Interaction energy SURFACTANT molecular dynamics
下载PDF
Balanced Fracturing and Cold-welding of Magnesium during Ball Milling Assisted by Carbon Coating:Experimental and Molecular Dynamic Simulation
14
作者 韩宗盈 DONG Hui +2 位作者 DING Guoyang ZHANG Jiale SONG Xiufang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期895-903,共9页
The lignite-derived carbon from self-protection pyrolysis was employed to balance the fracturing and cold-welding of magnesium during ball milling.Particle size analysis indicates that the introduction of lignite-deri... The lignite-derived carbon from self-protection pyrolysis was employed to balance the fracturing and cold-welding of magnesium during ball milling.Particle size analysis indicates that the introduction of lignite-derived carbon can effectively reduce the particle size of Mg while the introduction of graphite does no help.Besides,the effect of lignite-derived carbon on crystallite size reduction of Mg is also better than graphite.A moderate cold-welding phenomenon was observed after ball-milling Mg with the lignite-derived carbon,suggesting less Mg is wasted on the milling vials and balls.Molecular dynamic simulations reveal that the balanced fracturing and cold-welding of magnesium during ball milling is mainly attributed to the special structure of the lignite-derived carbon:graphitized short-range ordered stacking function as dry lubricant and irregular shape/sharp edge function as milling aid.The preliminary findings in current study are expected to offer implications for designing efficient Mg-based hydrogen storage materials. 展开更多
关键词 MAGNESIUM lignite-derived carbon cold-welding ball milling molecular dynamic
下载PDF
B-COPNA resin formation from ethylene tar light fractions:Process development and mechanical exploration by molecular simulation
15
作者 Hongyan Shen Lingrui Cui +4 位作者 Xingguo Wei Yuanqin Zhang Lian Cen Jun Xu Fahai Cao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期118-129,共12页
An efficient utilization strategy of ethylene tar(ET),the main by-product of the ethylene cracking unit,is urgently required to meet demands for modern petrochemical industry.On the other hand,condensed polynuclear ar... An efficient utilization strategy of ethylene tar(ET),the main by-product of the ethylene cracking unit,is urgently required to meet demands for modern petrochemical industry.On the other hand,condensed polynuclear aromatic resin of moderate condensation degree(B-COPNA)is a widely used carbon material due to its superb processability,the production of which is,however,seriously limited by the high cost of raw materials.Under such context,an interesting strategy was proposed in this study for producing B-COPNA resin using crosslinked light fractions of ethylene tar(ETLF,boiling point<260℃)facilitated by molecular simulation.1,4-Benzenedimethanol(PXG)was first selected as the crosslinking agent according to the findings of molecular simulation.The effects of operating conditions,including reactions temperature,crosslinking agent,and catalyst content on the softening point and yield of B-COPNA resin products were then investigated to optimize the process.The reaction mechanism of resin production was studied by analyzing the molecular structure and transition state of ETLF and crosslinking agents.It was shown that PXG exhibited a superior capacity of withdrawing electrons and a higher electrophilic reactivity than other crosslinking agents.In addition to the highest yield and greatest heat properties,PXG-prepared resin contained the most condensed aromatics.The corresponding optimized conditions of resin preparation were 180℃,1:1.9(PXG:ETLF),and 3%(mass)of catalyst content with a resin yield of 78.57%.It was the electrophilic substitution reaction that occurred between the ETLF and crosslinking agent molecules that were responsible for the resin formation,according to the experimental characterization and molecular simulation.Hence,it was confirmed that the proposed strategy and demonstrated process can achieve a clean and high value-added utilization of ETLF via B-COPNA resin preparation,bringing huge economic value to the current petrochemical industry. 展开更多
关键词 Ethylene tar CROSSLINKING COPNA resin molecular simulation Transient state
下载PDF
Molecular dynamics simulations on the interactions between nucleic acids and a phospholipid bilayer
16
作者 徐耀 黄舒伟 +1 位作者 丁泓铭 马余强 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期512-521,共10页
Recently,lipid nanoparticles(LNPs)have been extensively investigated as non-viral carriers of nucleic acid vaccines due to their high transport efficiency,safety,and straightforward production and scalability.However,... Recently,lipid nanoparticles(LNPs)have been extensively investigated as non-viral carriers of nucleic acid vaccines due to their high transport efficiency,safety,and straightforward production and scalability.However,the molecular mechanism underlying the interactions between nucleic acids and phospholipid bilayers within LNPs remains elusive.In this study,we employed the all-atom molecular dynamics simulation to investigate the interactions between single-stranded nucleic acids and a phospholipid bilayer.Our findings revealed that hydrophilic bases,specifically G in single-stranded RNA(ssRNA)and single-stranded DNA(ssDNA),displayed a higher propensity to form hydrogen bonds with phospholipid head groups.Notably,ssRNA exhibited stronger binding energy than ssDNA.Furthermore,divalent ions,particularly Ca2+,facilitated the binding of ssRNA to phospholipids due to their higher binding energy and lower dissociation rate from phospholipids.Overall,our study provides valuable insights into the molecular mechanisms underlying nucleic acidphospholipid interactions,with potential implications for the nucleic acids in biotherapies,particularly in the context of lipid carriers. 展开更多
关键词 RNA DNA lipid bilayer molecular dynamics interface interaction divalent cation
下载PDF
Collective Molecular Machines: Multidimensionality and Reconfigurability
17
作者 Bin Wang Yuan Lu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期309-340,共32页
Molecular machines are key to cellular activity where they are involved in converting chemical and light energy into efficient mechanical work.During the last 60 years,designing molecular structures capable of generat... Molecular machines are key to cellular activity where they are involved in converting chemical and light energy into efficient mechanical work.During the last 60 years,designing molecular structures capable of generating unidirectional mechanical motion at the nanoscale has been the topic of intense research.Effective progress has been made,attributed to advances in various fields such as supramolecular chemistry,biology and nanotechnology,and informatics.However,individual molecular machines are only capable of producing nanometer work and generally have only a single functionality.In order to address these problems,collective behaviors realized by integrating several or more of these individual mechanical units in space and time have become a new paradigm.In this review,we comprehensively discuss recent developments in the collective behaviors of molecular machines.In particular,collective behavior is divided into two paradigms.One is the appropriate integration of molecular machines to efficiently amplify molecular motions and deformations to construct novel functional materials.The other is the construction of swarming modes at the supramolecular level to perform nanoscale or microscale operations.We discuss design strategies for both modes and focus on the modulation of features and properties.Subsequently,in order to address existing challenges,the idea of transferring experience gained in the field of micro/nano robotics is presented,offering prospects for future developments in the collective behavior of molecular machines. 展开更多
关键词 molecular machines Collective control Collective behaviors DNA Biomolecular motors
下载PDF
Molecular investigation into the transformation of recalcitrant dissolved organic sulfur in refinery sour water during stripping process
18
作者 Yu-Guo Li Chen He +2 位作者 Chun-Mao Chen Fan Liu Quan Shi 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期2112-2119,共8页
Refinery sour water primarily originates from the tops of towers in various units and coker condensate,and cannot be discharged directly to a wastewater treatment plant due to high levels of chemical oxygen demand(COD... Refinery sour water primarily originates from the tops of towers in various units and coker condensate,and cannot be discharged directly to a wastewater treatment plant due to high levels of chemical oxygen demand(COD)and organic sulfur contents.Even after the recovery of H_(2)S from the sour water by the stripping process,the effluent still contains a high concentration of dissolved organic sulfur(DOS),which can have a huge bad influence.While chemical composition of dissolved organic matter(DOM)in refinery wastewater has been extensively studied,the investigation of recalcitrant DOS from sour waters remains unclear.In the present study,chemical composition of sour water DOMs(especially DOS)was investigated using fluorescence spectroscopy(excitation-emission matrix,EEM)and mass spectrometry,including gas chromatography-mass spectrometry(GC-MS)and high-resolution Orbitrap MS.The GC-MS and EEM results showed that volatile and low-aromaticity compounds were effectively removed during the stripping process,while compounds with high hydrophilicity and humification degree were found to be more recalcitrant.The Orbitrap MS results showed that weak-polar oxygenated sulfur compounds were easier to be removed than oxygenated compounds.However,the effluent still contained significant amounts of sulfur-containing compounds with multiple sulfur atoms,particularly in the form of highly unsaturated and aromatic compounds.The Orbitrap MS/MS results of CHOS-containing compounds from the effluent indicate that the sulfur atoms may exist as sulfonates,disulfide bonds,thioethers.Understanding the composition and structure of sour water DOS is crucial for the development of effective treatment processes that can target polysulfide compounds and minimize their impact on the environment. 展开更多
关键词 molecular transformation Dissolved organic sulfur Stripping process Refinery sourwater Orbitrap MS
下载PDF
Molecular dynamics simulation of the flow mechanism of shear-thinning fluids in a microchannel
19
作者 杨刚 郑庭 +1 位作者 程启昊 张会臣 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期516-525,共10页
Shear-thinning fluids have been widely used in microfluidic systems,but their internal flow mechanism is still unclear.Therefore,in this paper,molecular dynamics simulations are used to study the laminar flow of shear... Shear-thinning fluids have been widely used in microfluidic systems,but their internal flow mechanism is still unclear.Therefore,in this paper,molecular dynamics simulations are used to study the laminar flow of shear-thinning fluid in a microchannel.We validated the feasibility of our simulation method by evaluating the mean square displacement and Reynolds number of the solution layers.The results show that the change rule of the fluid system's velocity profile and interaction energy can reflect the shear-thinning characteristics of the fluids.The velocity profile resembles a top-hat shape,intensifying as the fluid's power law index decreases.The interaction energy between the wall and the fluid decreases gradually with increasing velocity,and a high concentration of non-Newtonian fluid reaches a plateau sooner.Moreover,the velocity profile of the fluid is related to the molecule number density distribution and their values are inversely proportional.By analyzing the radial distribution function,we found that the hydrogen bonds between solute and water molecules weaken with the increase in velocity.This observation offers an explanation for the shear-thinning phenomenon of the non-Newtonian flow from a micro perspective. 展开更多
关键词 molecular dynamics simulation non-Newtonian fluid MICROCHANNEL SHEAR-THINNING
下载PDF
Effect of Molecular Weight on Thermoelectric Performance of P3HT Analogues with 2-Propoxyethyl Side Chains
20
作者 董得福 WANG Wei +3 位作者 ZHAN Chun LI Chenglong ZHOU Qisheng 肖生强 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期268-281,共14页
By replacing hexyl chains in poly(3-hexylthiophene)(P3HT)with 2-propoxyethyls,four poly(3-(2-propoxyethyl)thiophene)(P3POET)homopolymers with comparable polydispersity indexes(PDI)and regioregularities were prepared h... By replacing hexyl chains in poly(3-hexylthiophene)(P3HT)with 2-propoxyethyls,four poly(3-(2-propoxyethyl)thiophene)(P3POET)homopolymers with comparable polydispersity indexes(PDI)and regioregularities were prepared herein in addition with step increment of about 7 kDa on numberaverage molecular weight(M_(n))from around 11 to 32 kDa(accordingly denoted as P11k,P18k,P25k,and P32k).When doped in film by FeCl_(3)at the optimized conditions,the maximum power factor(PF_(max))increases greatly from 4.3μW·m^(-1)·K^(-2)for P11k to 8.8μW·m^(-1)·K^(-2)for P18k,and further to 9.7μW·m^(-1)·K^(-2)for P25k,followed by a slight decrease to 9.2μW·m^(-1)·K^(-2)for P32k.The close Seebeck coefficients(S)at PF_(max)are observed in these doped polymer films due to their consistent frontier orbital energy levels and Fermi levels.The main contribution to this PF_(max)evolution thus comes from the corresponding conductivities(σ).Theσvariation of the doped films can be rationally correlated with their microstructure evolution. 展开更多
关键词 conjugated polymer molecular weight MICROSTRUCTURE thermoelectric performance
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部