Poly-lactic acid(PLA) is widely used as a controlled drug release material and the diffusion property of water within the polymer matrix is closely related to the drug release profile. This paper studies the water dif...Poly-lactic acid(PLA) is widely used as a controlled drug release material and the diffusion property of water within the polymer matrix is closely related to the drug release profile. This paper studies the water diffusion in PLA by molecular dynamic simulations. Free volume analysis indicates that water molecules are expected to fill in the free volumes of the polymer matrix forming water clusters at low water content. Along with the increase of the water concentration, the polymer starts to swell and the density of the system starts to drop.Due to the high mobility of water within water cluster, the calculated diffusion coefficient dramatically increases along with the incensement of water content. Thus, we conclude that the diffusion of water is a self-accelerate process, with higher mobility of water in the case where more water exists.展开更多
We use non-equilibrium molecular dynamics simulations to calculate the self-diffusion coefficient, D, of a Lennard Jones fluid over a wide density and temperature range. The change in self-diffusion coefficient with t...We use non-equilibrium molecular dynamics simulations to calculate the self-diffusion coefficient, D, of a Lennard Jones fluid over a wide density and temperature range. The change in self-diffusion coefficient with temperature decreases by increasing density. For density ρ* = ρσ3 = 0.84 we observe a peak at the value of the self-diffusion coefficient and the critical temperature T* = kT/ε = 1.25. The value of the self-diffusion coefficient strongly depends on system size. The data of the self-diffusion coefficient are fitted to a simple analytic relation based on hydrodynamic arguments. This correction scales as N-α, where α is an adjustable parameter and N is the number of particles. It is observed that the values of a 〈 1 provide quite a good correction to the simulation data. The system size dependence is very strong for lower densities, but it is not as strong for higher densities. The self-diffusion coefficient calculated with non-equilibrium molecular dynamic simulations at different temperatures and densities is in good agreement with other calculations fronl the literature.展开更多
Microscopic structure and diffusion properties of benzene in ambient water (298 K, 0.1 MPa) and super critical water (673-773 K, 25-35 MPa) are investigated by molecular dynamics simulation with site-site models. It...Microscopic structure and diffusion properties of benzene in ambient water (298 K, 0.1 MPa) and super critical water (673-773 K, 25-35 MPa) are investigated by molecular dynamics simulation with site-site models. It is found that at the ambient condition, the water molecules surrounding a benzene molecule form a hydrogen bond network. The hydrogen bond interaction between supercritical water molecules decreases dramatically under supercritical conditions. The diffusion coefficients of both the solute molecule and solvent molecule at supercritical conditions increase by 30-180 times than those at the ambient condition. With the temperature approaching the critical temperature, the change of diffusion coefficient with pressure becomes pronounced.展开更多
An analysis of the molecular dynamics of ethanol solvated by water molecules in the absence and presence of a Pt surface has been performed using DL_POLY_2.19 code. The structure and diffusion properties of an ethanol...An analysis of the molecular dynamics of ethanol solvated by water molecules in the absence and presence of a Pt surface has been performed using DL_POLY_2.19 code. The structure and diffusion properties of an ethanol–water system have been studied at various temperatures from 250 to 600 K. We have measured the self-diffusion coefficients of the 50:50% ethanol–water solution;in the absence of a Pt surface our results show an excellent agreement–within an error of 7.4% – with the experimental data. An increase in the self-diffusion coefficients with the inclusion of a Pt surface has been observed. The estimation of the diffusion coefficients of both water and ethanol in the presence of a Pt surface shows that they obey the Arrhenius equation;the calculated activation energies of diffusion of ethanol and water are 2.47 and 2.98 Kcal/mole, respectively. The radial distribution function graphs and density profiles have been built;their correlations with the self-diffusion coefficients of both ethanol and water molecules are also illustrated.展开更多
基金Supported by the Scientific Developing Foundation of Tianjin Municipal Education Commission(2017SK055)the Project Grants 521 Talents Cultivation of Zhejiang Sci-Tech University
文摘Poly-lactic acid(PLA) is widely used as a controlled drug release material and the diffusion property of water within the polymer matrix is closely related to the drug release profile. This paper studies the water diffusion in PLA by molecular dynamic simulations. Free volume analysis indicates that water molecules are expected to fill in the free volumes of the polymer matrix forming water clusters at low water content. Along with the increase of the water concentration, the polymer starts to swell and the density of the system starts to drop.Due to the high mobility of water within water cluster, the calculated diffusion coefficient dramatically increases along with the incensement of water content. Thus, we conclude that the diffusion of water is a self-accelerate process, with higher mobility of water in the case where more water exists.
基金supported by the National Natural Science Foundation of China (Grant No. 51076128)the National High Technology Research and Development Program of China (Grant No. 2009AA05Z107)
文摘We use non-equilibrium molecular dynamics simulations to calculate the self-diffusion coefficient, D, of a Lennard Jones fluid over a wide density and temperature range. The change in self-diffusion coefficient with temperature decreases by increasing density. For density ρ* = ρσ3 = 0.84 we observe a peak at the value of the self-diffusion coefficient and the critical temperature T* = kT/ε = 1.25. The value of the self-diffusion coefficient strongly depends on system size. The data of the self-diffusion coefficient are fitted to a simple analytic relation based on hydrodynamic arguments. This correction scales as N-α, where α is an adjustable parameter and N is the number of particles. It is observed that the values of a 〈 1 provide quite a good correction to the simulation data. The system size dependence is very strong for lower densities, but it is not as strong for higher densities. The self-diffusion coefficient calculated with non-equilibrium molecular dynamic simulations at different temperatures and densities is in good agreement with other calculations fronl the literature.
基金Supported by the State Key Fundamental Research Plan (NO. G2000048) and the National High Performance Computing Foundation of China (No. 99118).
文摘Microscopic structure and diffusion properties of benzene in ambient water (298 K, 0.1 MPa) and super critical water (673-773 K, 25-35 MPa) are investigated by molecular dynamics simulation with site-site models. It is found that at the ambient condition, the water molecules surrounding a benzene molecule form a hydrogen bond network. The hydrogen bond interaction between supercritical water molecules decreases dramatically under supercritical conditions. The diffusion coefficients of both the solute molecule and solvent molecule at supercritical conditions increase by 30-180 times than those at the ambient condition. With the temperature approaching the critical temperature, the change of diffusion coefficient with pressure becomes pronounced.
文摘An analysis of the molecular dynamics of ethanol solvated by water molecules in the absence and presence of a Pt surface has been performed using DL_POLY_2.19 code. The structure and diffusion properties of an ethanol–water system have been studied at various temperatures from 250 to 600 K. We have measured the self-diffusion coefficients of the 50:50% ethanol–water solution;in the absence of a Pt surface our results show an excellent agreement–within an error of 7.4% – with the experimental data. An increase in the self-diffusion coefficients with the inclusion of a Pt surface has been observed. The estimation of the diffusion coefficients of both water and ethanol in the presence of a Pt surface shows that they obey the Arrhenius equation;the calculated activation energies of diffusion of ethanol and water are 2.47 and 2.98 Kcal/mole, respectively. The radial distribution function graphs and density profiles have been built;their correlations with the self-diffusion coefficients of both ethanol and water molecules are also illustrated.