Introduction The molecular dynamics simulation technique has recently proved to be a suitable alternative approachfor simulation of vibrational spectroscopy. In this study, molecular dynamics was utilized to understan...Introduction The molecular dynamics simulation technique has recently proved to be a suitable alternative approachfor simulation of vibrational spectroscopy. In this study, molecular dynamics was utilized to understandlow frequency vibrations in highly ordered poly(ρ-phenylene terephthalmide) (PPTA). A key structuralfeature of this polymer is the presence of hydrogen bonds. There is little question that this strong localized展开更多
The aim of this article was to provide a systematic method to perform molecular dynamics simulotion or evaluation for nano-scale interfacial friction behavior between two kinds of materials in MEMS design. Friction is...The aim of this article was to provide a systematic method to perform molecular dynamics simulotion or evaluation for nano-scale interfacial friction behavior between two kinds of materials in MEMS design. Friction is an important factor affecting the performance and reliability of MEMS. The model of the nano-scale interracial friction behavior between two kinds of materials was presented based on the Newton' s equations of motion. The Morse potential function was selected for the model. The improved Verlet algorithm was employed to resolve the model, the atom trajectories and the law of the interfacial friction behavior. Comparisons with experimental data in other paper confirm the validity of the model. Using the model it is possible to simulate or evaluate the importance of different factors for designing of the nano-scale interfacial friction behavior between two kinds of materials in MEMS.展开更多
Molecular dynamics(MD)simulations are conducted to study the thermo-mechanical properties of a family of thermosetting epoxy-amines.The crosslinked epoxy resin EPON862 with a series of cross-linkers is built and simul...Molecular dynamics(MD)simulations are conducted to study the thermo-mechanical properties of a family of thermosetting epoxy-amines.The crosslinked epoxy resin EPON862 with a series of cross-linkers is built and simulated under the polymer consistent force field(PCFF).Three types of curing agents(rigidity1,3-phenylenediamine(1,3-P),4,4-diaminodiphenylmethane(DDM),and phenol-formaldehyde-ethylenediamine(PFE))with different numbers of active sites are selected in the simulations.We focus on the effects of the cross-linkers on thermo-mechanical properties such as density,glass transition temperature(T_(g)),elastic constants,and strength.Our simulations show a significant increase in the Tg,Young’s modulus and yield stress with the increase in the degree of conversion.The simulation results reveal that the mechanical properties of thermosetting polymers are strongly dependent on the molecular structures of the cross-linker and network topological properties,such as end-to-end distance,crosslinking density and degree of conversion.展开更多
Molecular dynamics simulations are useful tools to unveil molecular mechanisms of polymer phase separation,self-assembly,adsorption,and so on.Due to large molecular size and slow relaxation of the polymer chains,a gre...Molecular dynamics simulations are useful tools to unveil molecular mechanisms of polymer phase separation,self-assembly,adsorption,and so on.Due to large molecular size and slow relaxation of the polymer chains,a great amount of issues related to large-distance chain displacement cannot be tackled easily with conventional molecular dynamic simulations.Systematic coarse-graining and enhanced sampling methods are two types of improvements that can boost spatiotemporal scales in polymer simulations.We present two typical ways to obtain the coarse-graining potential either by fitting to correct liquid structures or by fitting to available thermodynamic properties of polymer systems.The newly proposed anisotropic coarse-grained particle model can be used to describe aggregation and assembly of polymeric building blocks from disk-like micelles to Janus particles.We also present a stochastic polymerization model combined with coarse-grained simulations to investigate the problems strongly influenced by the coupling of polymerization and excluded volume effects.Finally,a facile implementation of integrated tempering sampling method is illustrated to be very efficient on bypassing local energy minima and having access to true equilibrium polymer structures.展开更多
The properties of the confined liquid are dramatically different from those of the bulk state, which were reviewed in the present work. We performed large-scale molecular dynamics simulations and full-atom nonequilibr...The properties of the confined liquid are dramatically different from those of the bulk state, which were reviewed in the present work. We performed large-scale molecular dynamics simulations and full-atom nonequilibrium molecular dynamics simulations to investigate the shear response of the confined simple liquid as well as the n-hexadecane ultrathin films. The shear viscosity of the confined simple liquid increases with the decrease of the film thickness. Apart from the well-known ordered structure, the confined n-hexaxiecane exhibited a transition from 7 layers to 6 in our simulations while undergoing an increasing shear velocity. Various slip regimes of the confined n-hexadecane were obtained. Viscosity coefficients of individual layers were examined and the results revealed that the local viscosity'coefficient varies with the distance from the wall. The individual n-hexadecane layers showed the shear-thinning behaviors which can be correlated with the occurrence of the slip. This study aimed at elucidating the detailed shear response of the confined liquid and may be used in the design and application of microand nano-devices.展开更多
Interfacing and compatibility are the most challenging issues that affect the performance of polymer modified asphalt.Mechanisms of interfacial enhancement among four base asphalt components(asphaltenes,resins,aromati...Interfacing and compatibility are the most challenging issues that affect the performance of polymer modified asphalt.Mechanisms of interfacial enhancement among four base asphalt components(asphaltenes,resins,aromatics,and saturate),styrene-butadiene-styrene(SBS),and carbon nanotubes(CNTs)were investigated by molecular dynamics simulation,with the aim of understanding the key parameters that control the compatibility of CNTs and interphase behavior on the molecular scale.The compatibility of SBS-modified asphalt(SBSMA)was simulated based on self-assembly theory using indexes of binding energy,mean square displacement,diffusion coefficient,and relative concentration distribution.The interphase behavior and microstructure were observed by fluorescence microscopy and scanning electron microscopy.In addition,a rutting experiment was used to verify the molecular dynamics simulation based on macroscopic performance.The results showed that after adding CNTs,the binding energy of the SBS and aromatics increased from 301.8343 to 327.1102 kcal/mol.The diffusion coefficient of the SBS and asphaltenes decreased more than 3.2×10-11 m2/s,and the correlation coefficients between the diffusion coefficient and the molecular weight,surface area and volume were all lower than 0.3.Relative concentration distribution curves indicated that CNTs promote the ability of SBS to swell.Microscopic observations demonstrated that the swelling ability of SBS was increased by CNTs.Overall,the interphase of SBSMA was improved by the additional reinforcement,swelling,and diffusion provided by CNTs.Finally,the rutting experiment found that no matter what the temperature,the rutting factor of CNT/SBSMA is higher than that of SBSMA,which corroborates the findings from the molecular dynamics simulations.展开更多
Molecular dynamics simulations have been performed to explore the atomic-scale sliding friction, especially the stick-slip friction, in a system consisting of a diamond slider and a silver substrate. The mechanisms of...Molecular dynamics simulations have been performed to explore the atomic-scale sliding friction, especially the stick-slip friction, in a system consisting of a diamond slider and a silver substrate. The mechanisms of the stick-slip behavior are investigated by considering sliding speeds between 10 m/s and 200 m/s.The analyses of the shear distance between the upmost layer and the downmost layer and displacements of a column of atoms in the slider show that shearing deformation of the slider is the main cause of the stick-slip phenomenon. Our simulations also present that a commensurate fit between the two contact surfaces is unimportant for the stick-slip friction.展开更多
Molecular models of pristine, functionalized and cross-linked graphene sheet/polymer composites are developed. Temperature cooling processes are conducted to examine the improve-ment of glass transition temperature of...Molecular models of pristine, functionalized and cross-linked graphene sheet/polymer composites are developed. Temperature cooling processes are conducted to examine the improve-ment of glass transition temperature of cross-linked graphene sheet/polymer composites using molecular dynamics simulations. The results show that increases of about 12.2% and 8.9% in the glass transition temperature of cross-linked graphene sheet/polymer composites are obtained, respectively, than those of the pristine and functionalized graphene sheet/polymer composites. In order to reveal the enhanced thermal properties from atomic views, the interfacial interaction energy and radius distribution function between the graphene sheets and the polymer matrix, the mean square displacement variations and the free volume of polymer composites are examined and discussed.展开更多
The behavior of a single polyethylene polymer in aqueous solution confined between two hydrophilic walls is studied with molecular dynamics (MD) simulations. The thickness of the nano-slit ranges from 1.26 to 3.15 nm,...The behavior of a single polyethylene polymer in aqueous solution confined between two hydrophilic walls is studied with molecular dynamics (MD) simulations. The thickness of the nano-slit ranges from 1.26 to 3.15 nm, which is comparative to the polymer dimension. A monotonic transition from 3D- to 2D-like configurations is observed as the distance between the two walls narrows. Monomers are compressed into several layers and the preferred bond orientations alternate between parallel and normal to the walls accordingly. The diffusivity in the direction parallel to the wall is always larger than the one perpendicular to it. Calculation of the entropy and enthalpy changes during the folding of the polymer chain alone cannot explain the spontaneous process. The corresponding increase in water entropy due to volume expansion may be large enough to result in the overall free energy decrease.展开更多
The micro-capsules used for drug delivery are fabricated using polylactic acid(PLA),which is a biomedical material approved by the FDA.A coarse-grained model of long-chain PLA was built,and molecular dynamics(MD)s...The micro-capsules used for drug delivery are fabricated using polylactic acid(PLA),which is a biomedical material approved by the FDA.A coarse-grained model of long-chain PLA was built,and molecular dynamics(MD)simulations of the model were performed using a MARTINI force field.Based on the nonlocal theory,the formula for the initial elastic modulus of polymers considering the nonlocal effect was derived,and the scaling law of internal characteristic length of polymers was proposed,which was used to adjust the cut-off radius in the MD simulations of PLA.The results show that the elastic modulus should be computed using nonlinear regression.The nonlocal effect has a certain influence on the simulation results of PLA.According to the scaling law,the cut-off radius was determined and applied to the MD simulations,the results of which reflect the influence of the molecular weight change on the elastic moduli of PLA,and are in agreement with the experimental outcome.展开更多
Coarse-grained molecular dynamics simulations were carried out to investigate the dewetting behavior of a polymer thin film on partial wetting solid surface at the early stage of the dewetting process. Spontaneous dew...Coarse-grained molecular dynamics simulations were carried out to investigate the dewetting behavior of a polymer thin film on partial wetting solid surface at the early stage of the dewetting process. Spontaneous dewetting is initiated by removing a band of strip from both the ends of the liquid polymer film which has achieved equilibrium. The solid-liquid interaction and temperature were varied to show their influence on the dewetting dynamics during dewetting as well as the shape evolution of the liquid polymer film. As is consistent with the results obtained in previous researches, the liquid film recedes at a constant speed initially with different solid-liquid couplings and tempe- ratures. Furthermore, smaller coupling parameters or higher temperatures tend to accelerate the recession speed of the liquid film and shorten the constant-speed recession duration. Obvious rims were not always observed. Both coupling parameter and temperature can influence the emergence of the rims.展开更多
The present work is devoted to a study of the molecular mechanisms of the crystallization of polymer chains induced by graphene by using molecular dynamics (MD) simulations. From the atomic configuration translation...The present work is devoted to a study of the molecular mechanisms of the crystallization of polymer chains induced by graphene by using molecular dynamics (MD) simulations. From the atomic configuration translation, the number distri- bution of the atoms, and the order parameter S, the crystallization process can be summarized in two steps, the adsorption and the orientation. By analyzing the diffusion properties of the polymer chains, we find that a graphene substrate has a great adsorption for the polymer molecules and the polymer molecules need more time to adjust their configurations. Therefore, the adsorption step and the orientation step are highly cooperative.展开更多
Grand canonical Monte Carlo and molecular dynamics simulation methods are used to simulate oxygen sorption and diffusion in amorphous poly(lactic acid) (PLA). The simulated solubility coefficient of oxygen is clos...Grand canonical Monte Carlo and molecular dynamics simulation methods are used to simulate oxygen sorption and diffusion in amorphous poly(lactic acid) (PLA). The simulated solubility coefficient of oxygen is close to experimental data obtained from the quartz crystal microbalance but much higher than those from the time-lag method. This discrepancy is explained by using the dual-mode sorption model. It is found that oxygen sorotion in PLA is predominantly Langmuir type controlled, i.e., through the process of filling holes. The time--lag method only takes into account oxygen molecules that participate the diffusion process whereas a large proportion of oxygen molecules trapped in the void have little chance to execute hopping due to the glassy nature of PLA at room temperature. The simulated diffusion coefficient of oxygen is reasonably close to the data obtained from the time-lag method. The solubility coefficient of oxygen decreases linearly with increasing relative humidity while its diffusion coefficient firstly decreases and then increases as a function of relative humidity.展开更多
Molecular dynamics simulation is a powerful tool in the study of polymeric systems.Among various simulation methods,coarse-grained(CG)model is particularly impactful because it effectively reduces the computational co...Molecular dynamics simulation is a powerful tool in the study of polymeric systems.Among various simulation methods,coarse-grained(CG)model is particularly impactful because it effectively reduces the computational complexity and enables the simulation of large-scale polymer systems.In this review,we briefly summarize recent progresses in our group on the development of CG simulation methods,models,as well as in the software development.By compiling the CG models and various simulation methods,we have successfully developed a GPU-accelerated large-scale molecular simulation toolkit(GALAMOST),which provides an efficient platform for polymer simulations.We further developed the new-generation PyGAMD(Python GPU-Accelerated MD Software,website:)software based on the Python platform,which makes the polymer simulation more powerful,flexible and user-friendly.In addition,some recent application cases in different polymer systems are also introduced.The aspiration of this review is to assist researchers in understanding the role of molecular simulations in the design and development of advanced polymer materials not only for academic researches,but also for possible industrial applications.展开更多
In this work,we used coarse-grained molecular dynamics simulation methods to investigate the dispersion and percolation behavior of nanoparticles in polymer nanocomposite.Our aim was to investigate the correlation bet...In this work,we used coarse-grained molecular dynamics simulation methods to investigate the dispersion and percolation behavior of nanoparticles in polymer nanocomposite.Our aim was to investigate the correlation between particle arrangement in nearby layers and the stretching performance in composite systems by exploring the stress transfer processes during different stages of the stretching process.The machine learning technique of linear regression was used to quantitatively measure the efficiency of stress transfer between particles nearby.According to our research,increasing the strength of attraction can significantly enhance the particle dispersion and affect the percolation threshold.We also noticed a non-monotonic relationship between the interaction strength and the tensile stress.Additionally,we quantified the efficiency of nanoparticles and polymers at transferring stress to nearby nanoparticles.As a result,the stress value provided by each particle in the aggregation body is significantly increased by the aggregation behavior of nanoparticles.The non-monotonic behavior is caused by two variables:the rapid disintegration of aggregates and the improved stress transfer efficiency from polymers to nanoparticles.Significantly,it was discovered that the structural rearrangement of nanoparticles during stretching is the main reason that causes the yield-like behavior seen in poorly dispersed systems.展开更多
Molecular simulations are now an essential part of modern chemistry and physics,especially for the investigation of macromolecules.They have evolved into mature approaches that can be used effectively to understand th...Molecular simulations are now an essential part of modern chemistry and physics,especially for the investigation of macromolecules.They have evolved into mature approaches that can be used effectively to understand the structure-to-property relationships of diverse macromolecular systems.In this article,we provide a tutorial on molecular simulations,focusing on the technical and practical aspects.Several prominent and classical simulation methods and software are introduced.The applications of molecular simulations in various directions of macromolecular science are thenfeatured by representative systems,including self-assembly,crystallization,chemical reaction,and some typical non-equilibrium systems.This tutorial paper provides a useful overview of molecular simulations in the rapid progress of macromolecular science,and suggests guidance for researchers who start exploiting molecular simulations in their study.展开更多
文摘Introduction The molecular dynamics simulation technique has recently proved to be a suitable alternative approachfor simulation of vibrational spectroscopy. In this study, molecular dynamics was utilized to understandlow frequency vibrations in highly ordered poly(ρ-phenylene terephthalmide) (PPTA). A key structuralfeature of this polymer is the presence of hydrogen bonds. There is little question that this strong localized
基金Funded by Natural Science Foundation of Guangxi Province ofChina (No.0339037) ,the Support Programfor Young and Middle-aged Disciplinary Leaders in Guangxi Higher Education Institution,the Science Foundationfor Qualified Personnel of Jiangsu University(04JDG027) ,andthe Innovative Science Foundation of Jiangsu Uni-versity
文摘The aim of this article was to provide a systematic method to perform molecular dynamics simulotion or evaluation for nano-scale interfacial friction behavior between two kinds of materials in MEMS design. Friction is an important factor affecting the performance and reliability of MEMS. The model of the nano-scale interracial friction behavior between two kinds of materials was presented based on the Newton' s equations of motion. The Morse potential function was selected for the model. The improved Verlet algorithm was employed to resolve the model, the atom trajectories and the law of the interfacial friction behavior. Comparisons with experimental data in other paper confirm the validity of the model. Using the model it is possible to simulate or evaluate the importance of different factors for designing of the nano-scale interfacial friction behavior between two kinds of materials in MEMS.
基金supported by the National Natural Science Foundation of China(Grant No.11772043)。
文摘Molecular dynamics(MD)simulations are conducted to study the thermo-mechanical properties of a family of thermosetting epoxy-amines.The crosslinked epoxy resin EPON862 with a series of cross-linkers is built and simulated under the polymer consistent force field(PCFF).Three types of curing agents(rigidity1,3-phenylenediamine(1,3-P),4,4-diaminodiphenylmethane(DDM),and phenol-formaldehyde-ethylenediamine(PFE))with different numbers of active sites are selected in the simulations.We focus on the effects of the cross-linkers on thermo-mechanical properties such as density,glass transition temperature(T_(g)),elastic constants,and strength.Our simulations show a significant increase in the Tg,Young’s modulus and yield stress with the increase in the degree of conversion.The simulation results reveal that the mechanical properties of thermosetting polymers are strongly dependent on the molecular structures of the cross-linker and network topological properties,such as end-to-end distance,crosslinking density and degree of conversion.
基金supported by the National Basic Research Program of China(2012CB821500)the National Natural Science Foundation of China(21025416,50930001)
文摘Molecular dynamics simulations are useful tools to unveil molecular mechanisms of polymer phase separation,self-assembly,adsorption,and so on.Due to large molecular size and slow relaxation of the polymer chains,a great amount of issues related to large-distance chain displacement cannot be tackled easily with conventional molecular dynamic simulations.Systematic coarse-graining and enhanced sampling methods are two types of improvements that can boost spatiotemporal scales in polymer simulations.We present two typical ways to obtain the coarse-graining potential either by fitting to correct liquid structures or by fitting to available thermodynamic properties of polymer systems.The newly proposed anisotropic coarse-grained particle model can be used to describe aggregation and assembly of polymeric building blocks from disk-like micelles to Janus particles.We also present a stochastic polymerization model combined with coarse-grained simulations to investigate the problems strongly influenced by the coupling of polymerization and excluded volume effects.Finally,a facile implementation of integrated tempering sampling method is illustrated to be very efficient on bypassing local energy minima and having access to true equilibrium polymer structures.
基金supported by the National Natural Science Foundation of China (NSFC, Nos. 60936001 and 11072244)the National Basic Research Program of China (973 Program, No. 2007CB310500)the Shanghai Supercomputer Center
文摘The properties of the confined liquid are dramatically different from those of the bulk state, which were reviewed in the present work. We performed large-scale molecular dynamics simulations and full-atom nonequilibrium molecular dynamics simulations to investigate the shear response of the confined simple liquid as well as the n-hexadecane ultrathin films. The shear viscosity of the confined simple liquid increases with the decrease of the film thickness. Apart from the well-known ordered structure, the confined n-hexaxiecane exhibited a transition from 7 layers to 6 in our simulations while undergoing an increasing shear velocity. Various slip regimes of the confined n-hexadecane were obtained. Viscosity coefficients of individual layers were examined and the results revealed that the local viscosity'coefficient varies with the distance from the wall. The individual n-hexadecane layers showed the shear-thinning behaviors which can be correlated with the occurrence of the slip. This study aimed at elucidating the detailed shear response of the confined liquid and may be used in the design and application of microand nano-devices.
基金the Innovative Funds Plan of Henan University of Technology(Nos.2020ZKCJ05 and 2020ZKCJ22)the Science and Technology Planning Project of Henan Province(No.192102310229)+4 种基金the Cultivation Plan for Youth Backbone Teachers of Institution of Higher Education by Henan Province(No.2019GGJS086)the Cultivation Plan for Youth Backbone Teachers by Henan University of Technologythe Key Science and Technology Research Project of Henan Provincial Department of Education(No.21A580002)the Foundation for Distinguished Young Talents of Henan University of Technology(No.2018QNJH09)the Central Public-interest Scientific Institution Basal Research Fund(No.2020–9049),China。
文摘Interfacing and compatibility are the most challenging issues that affect the performance of polymer modified asphalt.Mechanisms of interfacial enhancement among four base asphalt components(asphaltenes,resins,aromatics,and saturate),styrene-butadiene-styrene(SBS),and carbon nanotubes(CNTs)were investigated by molecular dynamics simulation,with the aim of understanding the key parameters that control the compatibility of CNTs and interphase behavior on the molecular scale.The compatibility of SBS-modified asphalt(SBSMA)was simulated based on self-assembly theory using indexes of binding energy,mean square displacement,diffusion coefficient,and relative concentration distribution.The interphase behavior and microstructure were observed by fluorescence microscopy and scanning electron microscopy.In addition,a rutting experiment was used to verify the molecular dynamics simulation based on macroscopic performance.The results showed that after adding CNTs,the binding energy of the SBS and aromatics increased from 301.8343 to 327.1102 kcal/mol.The diffusion coefficient of the SBS and asphaltenes decreased more than 3.2×10-11 m2/s,and the correlation coefficients between the diffusion coefficient and the molecular weight,surface area and volume were all lower than 0.3.Relative concentration distribution curves indicated that CNTs promote the ability of SBS to swell.Microscopic observations demonstrated that the swelling ability of SBS was increased by CNTs.Overall,the interphase of SBSMA was improved by the additional reinforcement,swelling,and diffusion provided by CNTs.Finally,the rutting experiment found that no matter what the temperature,the rutting factor of CNT/SBSMA is higher than that of SBSMA,which corroborates the findings from the molecular dynamics simulations.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 50730007, 50675111 and 50721004)National Basic Research Program of China (Grant No. 2009CB724200)
文摘Molecular dynamics simulations have been performed to explore the atomic-scale sliding friction, especially the stick-slip friction, in a system consisting of a diamond slider and a silver substrate. The mechanisms of the stick-slip behavior are investigated by considering sliding speeds between 10 m/s and 200 m/s.The analyses of the shear distance between the upmost layer and the downmost layer and displacements of a column of atoms in the slider show that shearing deformation of the slider is the main cause of the stick-slip phenomenon. Our simulations also present that a commensurate fit between the two contact surfaces is unimportant for the stick-slip friction.
文摘Molecular models of pristine, functionalized and cross-linked graphene sheet/polymer composites are developed. Temperature cooling processes are conducted to examine the improve-ment of glass transition temperature of cross-linked graphene sheet/polymer composites using molecular dynamics simulations. The results show that increases of about 12.2% and 8.9% in the glass transition temperature of cross-linked graphene sheet/polymer composites are obtained, respectively, than those of the pristine and functionalized graphene sheet/polymer composites. In order to reveal the enhanced thermal properties from atomic views, the interfacial interaction energy and radius distribution function between the graphene sheets and the polymer matrix, the mean square displacement variations and the free volume of polymer composites are examined and discussed.
基金the National Natural Science Foundation of China (Grant Nos. 20336040, 20490201 and 20221603)Chinese Academy of Sciences (Grant Nos. KJCX-SW-L01 and KJCX3-SYW-S01)Research Fund of Key Lab for Nanomaterials, Ministry of Education of China (Grant No. 2006-1)
文摘The behavior of a single polyethylene polymer in aqueous solution confined between two hydrophilic walls is studied with molecular dynamics (MD) simulations. The thickness of the nano-slit ranges from 1.26 to 3.15 nm, which is comparative to the polymer dimension. A monotonic transition from 3D- to 2D-like configurations is observed as the distance between the two walls narrows. Monomers are compressed into several layers and the preferred bond orientations alternate between parallel and normal to the walls accordingly. The diffusivity in the direction parallel to the wall is always larger than the one perpendicular to it. Calculation of the entropy and enthalpy changes during the folding of the polymer chain alone cannot explain the spontaneous process. The corresponding increase in water entropy due to volume expansion may be large enough to result in the overall free energy decrease.
基金Project supported by the National Natural Science Foundation of China(no.11272360)the Natural Science Foundation of Guangdong Province(no.2014A030313793)+1 种基金the Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund(the second phase)National Supercomputer Center in Guangzhou
文摘The micro-capsules used for drug delivery are fabricated using polylactic acid(PLA),which is a biomedical material approved by the FDA.A coarse-grained model of long-chain PLA was built,and molecular dynamics(MD)simulations of the model were performed using a MARTINI force field.Based on the nonlocal theory,the formula for the initial elastic modulus of polymers considering the nonlocal effect was derived,and the scaling law of internal characteristic length of polymers was proposed,which was used to adjust the cut-off radius in the MD simulations of PLA.The results show that the elastic modulus should be computed using nonlinear regression.The nonlocal effect has a certain influence on the simulation results of PLA.According to the scaling law,the cut-off radius was determined and applied to the MD simulations,the results of which reflect the influence of the molecular weight change on the elastic moduli of PLA,and are in agreement with the experimental outcome.
基金Supported by the National Natural Science Foundation of China(Nos.20774036 50930001+1 种基金 20933001)the Program for New Century Excellent Talents in University of China and Fok Ying Tung Education Foundation(No.114018)
文摘Coarse-grained molecular dynamics simulations were carried out to investigate the dewetting behavior of a polymer thin film on partial wetting solid surface at the early stage of the dewetting process. Spontaneous dewetting is initiated by removing a band of strip from both the ends of the liquid polymer film which has achieved equilibrium. The solid-liquid interaction and temperature were varied to show their influence on the dewetting dynamics during dewetting as well as the shape evolution of the liquid polymer film. As is consistent with the results obtained in previous researches, the liquid film recedes at a constant speed initially with different solid-liquid couplings and tempe- ratures. Furthermore, smaller coupling parameters or higher temperatures tend to accelerate the recession speed of the liquid film and shorten the constant-speed recession duration. Obvious rims were not always observed. Both coupling parameter and temperature can influence the emergence of the rims.
基金supported by the Science and Research Foundation of Sichuan Educational Committee, China (Grant Nos. 09ZC048, 13ZA0198, and 13ZB0211)
文摘The present work is devoted to a study of the molecular mechanisms of the crystallization of polymer chains induced by graphene by using molecular dynamics (MD) simulations. From the atomic configuration translation, the number distri- bution of the atoms, and the order parameter S, the crystallization process can be summarized in two steps, the adsorption and the orientation. By analyzing the diffusion properties of the polymer chains, we find that a graphene substrate has a great adsorption for the polymer molecules and the polymer molecules need more time to adjust their configurations. Therefore, the adsorption step and the orientation step are highly cooperative.
基金Supported by Program of New Century Excellent Talents in University (NCET-07-0313), the National Natural Science Foun- dation of China (20706019, 20876052), Guangdong Science Foundation ($2011010002078).
文摘Grand canonical Monte Carlo and molecular dynamics simulation methods are used to simulate oxygen sorption and diffusion in amorphous poly(lactic acid) (PLA). The simulated solubility coefficient of oxygen is close to experimental data obtained from the quartz crystal microbalance but much higher than those from the time-lag method. This discrepancy is explained by using the dual-mode sorption model. It is found that oxygen sorotion in PLA is predominantly Langmuir type controlled, i.e., through the process of filling holes. The time--lag method only takes into account oxygen molecules that participate the diffusion process whereas a large proportion of oxygen molecules trapped in the void have little chance to execute hopping due to the glassy nature of PLA at room temperature. The simulated diffusion coefficient of oxygen is reasonably close to the data obtained from the time-lag method. The solubility coefficient of oxygen decreases linearly with increasing relative humidity while its diffusion coefficient firstly decreases and then increases as a function of relative humidity.
基金supported by the National Key Research and Development Program of China(2022YFB3707300)the National Natural Science Foundation of China(22133002,22273031 and 22003019).
文摘Molecular dynamics simulation is a powerful tool in the study of polymeric systems.Among various simulation methods,coarse-grained(CG)model is particularly impactful because it effectively reduces the computational complexity and enables the simulation of large-scale polymer systems.In this review,we briefly summarize recent progresses in our group on the development of CG simulation methods,models,as well as in the software development.By compiling the CG models and various simulation methods,we have successfully developed a GPU-accelerated large-scale molecular simulation toolkit(GALAMOST),which provides an efficient platform for polymer simulations.We further developed the new-generation PyGAMD(Python GPU-Accelerated MD Software,website:)software based on the Python platform,which makes the polymer simulation more powerful,flexible and user-friendly.In addition,some recent application cases in different polymer systems are also introduced.The aspiration of this review is to assist researchers in understanding the role of molecular simulations in the design and development of advanced polymer materials not only for academic researches,but also for possible industrial applications.
基金This work was supported by the National Natural Science Foundation of China(Nos.21833008 and 52293471)and the National Key R&D Program of China(No.2022YFB3707303)。
文摘In this work,we used coarse-grained molecular dynamics simulation methods to investigate the dispersion and percolation behavior of nanoparticles in polymer nanocomposite.Our aim was to investigate the correlation between particle arrangement in nearby layers and the stretching performance in composite systems by exploring the stress transfer processes during different stages of the stretching process.The machine learning technique of linear regression was used to quantitatively measure the efficiency of stress transfer between particles nearby.According to our research,increasing the strength of attraction can significantly enhance the particle dispersion and affect the percolation threshold.We also noticed a non-monotonic relationship between the interaction strength and the tensile stress.Additionally,we quantified the efficiency of nanoparticles and polymers at transferring stress to nearby nanoparticles.As a result,the stress value provided by each particle in the aggregation body is significantly increased by the aggregation behavior of nanoparticles.The non-monotonic behavior is caused by two variables:the rapid disintegration of aggregates and the improved stress transfer efficiency from polymers to nanoparticles.Significantly,it was discovered that the structural rearrangement of nanoparticles during stretching is the main reason that causes the yield-like behavior seen in poorly dispersed systems.
基金financially supported by the National Natural Science Foundation of China(Nos.22025302 and 21873053).
文摘Molecular simulations are now an essential part of modern chemistry and physics,especially for the investigation of macromolecules.They have evolved into mature approaches that can be used effectively to understand the structure-to-property relationships of diverse macromolecular systems.In this article,we provide a tutorial on molecular simulations,focusing on the technical and practical aspects.Several prominent and classical simulation methods and software are introduced.The applications of molecular simulations in various directions of macromolecular science are thenfeatured by representative systems,including self-assembly,crystallization,chemical reaction,and some typical non-equilibrium systems.This tutorial paper provides a useful overview of molecular simulations in the rapid progress of macromolecular science,and suggests guidance for researchers who start exploiting molecular simulations in their study.