期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Atomistic simulation of free transverse vibration of graphene,hexagonal SiC, and BN nanosheets 被引量:1
1
作者 Danh-Truong Nguyen Minh-Quy Le +1 位作者 Thanh-Lam Bui Hai-Le Bui 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第1期132-147,共16页
Free transverse vibration of monolayer graphene, boron nitride (BN), and silicon carbide (SiC) sheets is investigated by using molecular dynamics finite element method. Eigenfrequencies and eigenmodes of these three s... Free transverse vibration of monolayer graphene, boron nitride (BN), and silicon carbide (SiC) sheets is investigated by using molecular dynamics finite element method. Eigenfrequencies and eigenmodes of these three sheets in rectangular shape are studied with different aspect ratios with respect to various boundary conditions. It is found that aspect ratios and boundary conditions affect in a similar way on natural frequencies of graphene, BN, and SiC sheets. Natural frequencies in all modes decrease with an increase of the sheet’s size. Graphene exhibits the highest natural frequencies, and SiC sheet possesses the lowest ones. Missing atoms have minor effects on natural frequencies in this study. 展开更多
关键词 Atomistic simulation Hexagonal sheet Transverse vibration molecular dynamics finite element method
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部