Two bacterial blight (BB) resistance genes, Xa21 and Xa4, from IRBB24 were introduced into hybrid rice restorer line Mianhui 725, which is highly susceptible to BB, by using hybridization and molecular marker-assist...Two bacterial blight (BB) resistance genes, Xa21 and Xa4, from IRBB24 were introduced into hybrid rice restorer line Mianhui 725, which is highly susceptible to BB, by using hybridization and molecular marker-assisted selection technology. Four homologous restorer lines were obtained through testing the R target genes with molecular markers and analyzing parental genetic background. Inoculation of the four lines and their hybrids with the specific strains of Xanthomonas oryzae pv. oryzae, P1, P6 and seven representative strains of Chinese pathotype, C Ⅰ -CⅦ, showed that all of the four lines and their hybrids were highly resistant and presented broad resistance-spectrum to BB. The hybrids of G46A / R207-2 displayed good agronomic characters and high yield potential, and R207-2 was named Shuhui 207.展开更多
The coincidence rates were more than 96% among the instar-weighted average of bioassaysin the lab, the percentage of resistance to Km in the field and the percentage of plantscontaining Bt gene. So, the performance of...The coincidence rates were more than 96% among the instar-weighted average of bioassaysin the lab, the percentage of resistance to Km in the field and the percentage of plantscontaining Bt gene. So, the performance of resistance to Km in the field can be used torepresent the transgenic Bt gene for selecting the resistance to bollworm. The instar-weighted averages were 30.585, 24.182, 16.615, 10.601, 10.123, 7.440 and 7.215 for theC0, P1, M1, M2, MP1, P2 and MP2 populations, respectively. The variance analysisindicated that the instar-weighted average in C0 was greatly significantly higher thanthat in all other populations, i.e., the performance of resistance to bollworm in C0 washighly significantly lower than all other populations. And the resistance in P1 wasgreatly lower than that of M1, M2, MP1, P2 and MP2, and M1 greatly lower than that of M2,MP1, P2 and MP2. There were no significant differences among M2, MP1, P2 and MP2. Withinthe populations of the first cycle selection, MP1 and M1 were greatly significantlyhigher than P1, and MP1 significantly higher than M1. The populations of the second cycleselection were significantly higher than their initial population M1, but no significantdifference among them. The boll size, seed index, the percent of the first harvest yield,fiber length, strength and elongation of the resistant plants to bollworm were significantlylower than that of sensitive plants to bollworm. And the yield of seed and lint cottonof the resistant plant to bollworm were lower than that of the sensitive to bollworm, butno significant difference between them. The boll numbers per plant, lint percent andmicronaire of the resistant plants to bollworm were significantly higher than that of thesensitive plant to bollworm.展开更多
The broad-spectrum blast resistance gene Pi-1, from donor line BL122, was introduced into a thermo-sensitive genic male sterile rice line GD-8S, which possessed good grain quality but high susceptibility to rice blast...The broad-spectrum blast resistance gene Pi-1, from donor line BL122, was introduced into a thermo-sensitive genic male sterile rice line GD-8S, which possessed good grain quality but high susceptibility to rice blast, by using backcross breeding and molecular marker-assisted selection. Five elite improved male sterile lines, RGD8S-1, RGD8S-2, RGD8S-3, RGD8S-4 and RGD8S-5, were selected based on the results of molecular marker analysis, spikelet sterility, recovery rate of genetic background and agronomic traits. Thirty-three representative blast isolates collected from Guangdong Province, China were used to inoculate the improved lines and the original line GD-8S artificially. The resistance frequencies of the improved lines ranged from 76.47% to 100%, much higher than that of the original line GD-8S (9.09%). On the agronomic characters, there were no significant differences between the improved lines and GD-8S except for flag leaf length and panicle number per plant. The improved lines could be used for breeding hybrid rice with high blast resistance.展开更多
In progenies resulting from crosses involving rice cultivar Norin 8m susceptible to bentazon as the donor of ben gene, SCARs tightly linked to ben were utilized for selection of ben. The homozygous and heterozygous ge...In progenies resulting from crosses involving rice cultivar Norin 8m susceptible to bentazon as the donor of ben gene, SCARs tightly linked to ben were utilized for selection of ben. The homozygous and heterozygous genotypes with ben could be identified with the SCARs. The molecular markers offer a powerful tool for indirect selection of ben and can accelerate the introgression of ben into current rice cultivars.展开更多
Evaluation of agronomic traits in Prunus breeding programs is a tedious process because of the long juvenile period of trees, the influence of juvenility and the existence of climatic factors affecting the expression ...Evaluation of agronomic traits in Prunus breeding programs is a tedious process because of the long juvenile period of trees, the influence of juvenility and the existence of climatic factors affecting the expression of the trait. For these reasons, marker-assisted selection (MAS) strategies are particularly useful in these cases. The objective of this work is the analysis of alternative low- cost strategies for development of molecular markers linked to agronomic traits in Prunus including the application of modified Bulked segregant analysis (BSA) using Simple sequence repeat (SSRs) markers and the application of Random amplified polymorphism microsatellite (RAMP) markers. First BSA results showed that two SSR loci were found to be tightly linked to flowering time in almond. On the other hand, RAMP analysis has been demonstrated to be a potentially valuable molecular marker for the study of genetic relationships in Prunus. Results showed the dominant nature of these markers with a great abundance and transferability although with a reduced polymorphism. In addition, RAMP application in F1 progenies showed its suitability for molecular characterization and mapping, and later Quantitative trait loci (QTL) or BSA analysis.展开更多
Sugarcane(Saccharum spp.) is a large perennial herbaceous plant that is cultivated in tropical and subtropical regions of the world,and it is also one of the most efficient crops in the world in converting energy from...Sugarcane(Saccharum spp.) is a large perennial herbaceous plant that is cultivated in tropical and subtropical regions of the world,and it is also one of the most efficient crops in the world in converting energy from sunlight into chemical energy. As an essential sugar crop and energy crop,sugarcane is receiving an increasing concern for its variety improvement. Traditional breeding and cultivation techniques have contributed a lot to increasing sugarcane yield and sucrose content. In recent years,development and application of biotechnology provide much help for genetic improvement of sugarcane. For convenience of breeders fully knowing advances in studies of sugarcane genetic improvement,this paper elaborated conventional breeding,genomics,GM technology,and molecular marker assisted breeding.展开更多
文摘Two bacterial blight (BB) resistance genes, Xa21 and Xa4, from IRBB24 were introduced into hybrid rice restorer line Mianhui 725, which is highly susceptible to BB, by using hybridization and molecular marker-assisted selection technology. Four homologous restorer lines were obtained through testing the R target genes with molecular markers and analyzing parental genetic background. Inoculation of the four lines and their hybrids with the specific strains of Xanthomonas oryzae pv. oryzae, P1, P6 and seven representative strains of Chinese pathotype, C Ⅰ -CⅦ, showed that all of the four lines and their hybrids were highly resistant and presented broad resistance-spectrum to BB. The hybrids of G46A / R207-2 displayed good agronomic characters and high yield potential, and R207-2 was named Shuhui 207.
基金supported in part by the National High Tech Program(2001AA211101)Trans-century Training Program Foundation for the Talents by the Ministry of Education and the Ministry of Science and Technology Program(J99-A-023).
文摘The coincidence rates were more than 96% among the instar-weighted average of bioassaysin the lab, the percentage of resistance to Km in the field and the percentage of plantscontaining Bt gene. So, the performance of resistance to Km in the field can be used torepresent the transgenic Bt gene for selecting the resistance to bollworm. The instar-weighted averages were 30.585, 24.182, 16.615, 10.601, 10.123, 7.440 and 7.215 for theC0, P1, M1, M2, MP1, P2 and MP2 populations, respectively. The variance analysisindicated that the instar-weighted average in C0 was greatly significantly higher thanthat in all other populations, i.e., the performance of resistance to bollworm in C0 washighly significantly lower than all other populations. And the resistance in P1 wasgreatly lower than that of M1, M2, MP1, P2 and MP2, and M1 greatly lower than that of M2,MP1, P2 and MP2. There were no significant differences among M2, MP1, P2 and MP2. Withinthe populations of the first cycle selection, MP1 and M1 were greatly significantlyhigher than P1, and MP1 significantly higher than M1. The populations of the second cycleselection were significantly higher than their initial population M1, but no significantdifference among them. The boll size, seed index, the percent of the first harvest yield,fiber length, strength and elongation of the resistant plants to bollworm were significantlylower than that of sensitive plants to bollworm. And the yield of seed and lint cottonof the resistant plant to bollworm were lower than that of the sensitive to bollworm, butno significant difference between them. The boll numbers per plant, lint percent andmicronaire of the resistant plants to bollworm were significantly higher than that of thesensitive plant to bollworm.
基金supported by the grants from the High-Tech Research and Development Program of China (Grant No. 2001AA241011 and No. 2003AA212052)the Major Sci-Tech Program of Guangdong Province, China (Grant No. 2003A2010101 and No. 2006A2020201)the Agricultural Scientific Program of Guangdong Province, China (Grant No. 2005B20101006)
文摘The broad-spectrum blast resistance gene Pi-1, from donor line BL122, was introduced into a thermo-sensitive genic male sterile rice line GD-8S, which possessed good grain quality but high susceptibility to rice blast, by using backcross breeding and molecular marker-assisted selection. Five elite improved male sterile lines, RGD8S-1, RGD8S-2, RGD8S-3, RGD8S-4 and RGD8S-5, were selected based on the results of molecular marker analysis, spikelet sterility, recovery rate of genetic background and agronomic traits. Thirty-three representative blast isolates collected from Guangdong Province, China were used to inoculate the improved lines and the original line GD-8S artificially. The resistance frequencies of the improved lines ranged from 76.47% to 100%, much higher than that of the original line GD-8S (9.09%). On the agronomic characters, there were no significant differences between the improved lines and GD-8S except for flag leaf length and panicle number per plant. The improved lines could be used for breeding hybrid rice with high blast resistance.
基金This work was supported by grants from Anhui Province Natura1 Science Foundation(0004111O).
文摘In progenies resulting from crosses involving rice cultivar Norin 8m susceptible to bentazon as the donor of ben gene, SCARs tightly linked to ben were utilized for selection of ben. The homozygous and heterozygous genotypes with ben could be identified with the SCARs. The molecular markers offer a powerful tool for indirect selection of ben and can accelerate the introgression of ben into current rice cultivars.
文摘Evaluation of agronomic traits in Prunus breeding programs is a tedious process because of the long juvenile period of trees, the influence of juvenility and the existence of climatic factors affecting the expression of the trait. For these reasons, marker-assisted selection (MAS) strategies are particularly useful in these cases. The objective of this work is the analysis of alternative low- cost strategies for development of molecular markers linked to agronomic traits in Prunus including the application of modified Bulked segregant analysis (BSA) using Simple sequence repeat (SSRs) markers and the application of Random amplified polymorphism microsatellite (RAMP) markers. First BSA results showed that two SSR loci were found to be tightly linked to flowering time in almond. On the other hand, RAMP analysis has been demonstrated to be a potentially valuable molecular marker for the study of genetic relationships in Prunus. Results showed the dominant nature of these markers with a great abundance and transferability although with a reduced polymorphism. In addition, RAMP application in F1 progenies showed its suitability for molecular characterization and mapping, and later Quantitative trait loci (QTL) or BSA analysis.
基金Supported by Science and Technology Planning Project of Guangdong Province(2014A030304012,2014A020208012,2015A030302009)Science and Technology Planning Project of Zhanjiang City(2015A03014)
文摘Sugarcane(Saccharum spp.) is a large perennial herbaceous plant that is cultivated in tropical and subtropical regions of the world,and it is also one of the most efficient crops in the world in converting energy from sunlight into chemical energy. As an essential sugar crop and energy crop,sugarcane is receiving an increasing concern for its variety improvement. Traditional breeding and cultivation techniques have contributed a lot to increasing sugarcane yield and sucrose content. In recent years,development and application of biotechnology provide much help for genetic improvement of sugarcane. For convenience of breeders fully knowing advances in studies of sugarcane genetic improvement,this paper elaborated conventional breeding,genomics,GM technology,and molecular marker assisted breeding.