The microstructural development of bimodal high density polyethylene subjected to tensile deformation was investigated as a function of strain after annealing at different temperatures by means of a scanning synchrotr...The microstructural development of bimodal high density polyethylene subjected to tensile deformation was investigated as a function of strain after annealing at different temperatures by means of a scanning synchrotron small angle X-ray scattering(SAXS)technique.Two different deformation mechanisms were activated in sequence upon tensile deformation:intralamellar slipping of crystalline blocks dominates the deformation behavior at small deformations whereas a stress-induced crystalline block fragmentation and recrystallization process occurs at a critical strain yielding new crystallites with the molecular chains preferentially oriented along the drawing direction.The critical strain associated with the lamellar-to-fibrillar transition was found to be ca.0.9 in bimodal sample,which is significantly larger than that observed for unimodal high-density polyethylene(0.4).This observation is primarily due to the fact that the bimodal sample possesses a greater mobility of the amorphous phase and thereby a reduced modulus of the entangled amorphous network.The conclusion of the mobility of the amorphous phase as a determining factor for the critical strain was further proven by the 1H-NMR T2 relaxation time.All these findings contribute to our understanding of the excellent slow crack growth resistance of bimodal polyethylene for pipe application.展开更多
Polyetherketoneketone(PEKK)is a new evolving polymeric material,and is considered as another important member of the polyaryletherketone(PAEK)family in addition to polyetheretherketone(PEEK).Hot compression molding ca...Polyetherketoneketone(PEKK)is a new evolving polymeric material,and is considered as another important member of the polyaryletherketone(PAEK)family in addition to polyetheretherketone(PEEK).Hot compression molding can be used to compact and consolidate the PEKK products,where the temperature and pressure play key roles to affect the molecular mobility,entanglement and crystallization,and thus the mechanical properties of PEKKs.In this study,a preheating treatment was introduced in the compression molding,and it is found that such preheating is very essential to avoid the formation of crystal FormⅡ,based on the increased chain entanglement.Molecular dynamics simulations revealed that the molecular mobility is always suppressed when a compression is applied.Therefore,by increasing the entanglement via the preheating and maintaining such entanglement in the consequent compression molding,strong and tough PEKK materials were obtained,with a negligible fraction of crystal FormⅡ.展开更多
Dielectric relaxation spectroscopy(DRS) of poly(ε-caprolactone) with different draw ratios showed that the mobility of polymer chains in the amorphous part decreases as the draw ratio increases. The activation en...Dielectric relaxation spectroscopy(DRS) of poly(ε-caprolactone) with different draw ratios showed that the mobility of polymer chains in the amorphous part decreases as the draw ratio increases. The activation energy of the α process, which corresponds to the dynamic glass transition, increases upon drawing. The enlarged gap between the activation energies of the α process and the β process results in a change of continuity at the crossover between the high temperature a process and the α and β processes. At low drawing ratios the a process connects with the β process, while at the highest drawing ratio in our measurements, the a process is continuous with the αprocess. This is consistent with X-ray diffraction results that indicate that upon drawing the polymer chains in the amorphous part align and densify upon drawing. As the draw ratio increases, the α relaxation broadens and decreases its intensity, indicating an increasing heterogeneity. We observed slope changes in the α traces, when the temperature decreases below that at which τα≈ 1 s. This may indicate the glass transition from the ‘rubbery' state to the non-equilibrium glassy state.展开更多
Formulation of poorly water-soluble crystalline drugs in their amorphous counterpart is a common approach to enhance their biodisponibility. In this study, the amorphous forms of ketoprofen and flurbiprofen were obtai...Formulation of poorly water-soluble crystalline drugs in their amorphous counterpart is a common approach to enhance their biodisponibility. In this study, the amorphous forms of ketoprofen and flurbiprofen were obtained by supercooling of the melt in a DSC (differential scanning calorimetry) apparatus and then investigated, especially under the stability point of view. The average rate of molecular motions at any given temperature is probably the most important parameter to know for amorphous pharmaceutical materials, and it was used to explain and predict the stability of ketoprofen and flurbiprofen. A quantitative estimate of the product's behaviour upon storage is obtained with additional data, such as the heat capacity of crystalline and amorphous samples and the distribution of molecular relaxation times. Amorphous flurbiprofen demonstrated greater physical stability at any aging temperature tested, when compared to ketoprofen and a different dependence from aging temperature. Both amorphous drugs could he classified as "fragile" ones.展开更多
1H spin-spin relaxation time(T2) measurement of polyampholyte hydrogel poly(methylacrylic acidacryloyloxyethyl trimethylammonium chloride)[P(MA-DAC)] in different pH, ionic strength and temperature was carried o...1H spin-spin relaxation time(T2) measurement of polyampholyte hydrogel poly(methylacrylic acidacryloyloxyethyl trimethylammonium chloride)[P(MA-DAC)] in different pH, ionic strength and temperature was carried out to reveal the molecular mobility. Spontaneous volume transition of the polyampholyte hydrogel was also investigated by spin-spin relaxation time measurement. Meanwhile T2 and the proton component fraction were acquired to study the swelling behaviour of the hydrogel. Moreover the changes of T2 characterized the molecular mo- bility of polyampholyte hydrogel in various swelling states. And the results suggest that the mobility of the main chains and a few free side chains(the long T2) of P(MA-DAC) was dominated by the mesh size in the hydrogel net- work, depending on the swelling ratio(Q) and the mobility of the side chains(the short T2) was influenced by electrostatic interaction between different charges in polymer side chains. Finally the T2 measurements of P(MA-DAC) hydrogel in the spontaneous swelling-deswelling process demonstrated the electrostatic interaction of the charged side chains caused deswelling behavior. At the same time, the mobility state transition temperature of the charged side chains was also studied by the lH spin-spin relaxation time measurements, and the transition activation energy of the side chains is 2.72 kJ.展开更多
基金This work was financially supported by the National Natural gieile Fuundaliun uf Chine(No.11074119)Jilin ScienuiL and Technological Development Program(No.20180519001JH).We thank Prof.Yongfeng Men and Dr,Victor Litvinov for helpful discussions.
文摘The microstructural development of bimodal high density polyethylene subjected to tensile deformation was investigated as a function of strain after annealing at different temperatures by means of a scanning synchrotron small angle X-ray scattering(SAXS)technique.Two different deformation mechanisms were activated in sequence upon tensile deformation:intralamellar slipping of crystalline blocks dominates the deformation behavior at small deformations whereas a stress-induced crystalline block fragmentation and recrystallization process occurs at a critical strain yielding new crystallites with the molecular chains preferentially oriented along the drawing direction.The critical strain associated with the lamellar-to-fibrillar transition was found to be ca.0.9 in bimodal sample,which is significantly larger than that observed for unimodal high-density polyethylene(0.4).This observation is primarily due to the fact that the bimodal sample possesses a greater mobility of the amorphous phase and thereby a reduced modulus of the entangled amorphous network.The conclusion of the mobility of the amorphous phase as a determining factor for the critical strain was further proven by the 1H-NMR T2 relaxation time.All these findings contribute to our understanding of the excellent slow crack growth resistance of bimodal polyethylene for pipe application.
基金financially supported by the Fundamental Research Funds for the Central Universities(No.2232021G-01)the National Natural Science Foundation of China(No.51862036)。
文摘Polyetherketoneketone(PEKK)is a new evolving polymeric material,and is considered as another important member of the polyaryletherketone(PAEK)family in addition to polyetheretherketone(PEEK).Hot compression molding can be used to compact and consolidate the PEKK products,where the temperature and pressure play key roles to affect the molecular mobility,entanglement and crystallization,and thus the mechanical properties of PEKKs.In this study,a preheating treatment was introduced in the compression molding,and it is found that such preheating is very essential to avoid the formation of crystal FormⅡ,based on the increased chain entanglement.Molecular dynamics simulations revealed that the molecular mobility is always suppressed when a compression is applied.Therefore,by increasing the entanglement via the preheating and maintaining such entanglement in the consequent compression molding,strong and tough PEKK materials were obtained,with a negligible fraction of crystal FormⅡ.
基金the research programme of the Dutch Polymer Institute (DPI),project#623
文摘Dielectric relaxation spectroscopy(DRS) of poly(ε-caprolactone) with different draw ratios showed that the mobility of polymer chains in the amorphous part decreases as the draw ratio increases. The activation energy of the α process, which corresponds to the dynamic glass transition, increases upon drawing. The enlarged gap between the activation energies of the α process and the β process results in a change of continuity at the crossover between the high temperature a process and the α and β processes. At low drawing ratios the a process connects with the β process, while at the highest drawing ratio in our measurements, the a process is continuous with the αprocess. This is consistent with X-ray diffraction results that indicate that upon drawing the polymer chains in the amorphous part align and densify upon drawing. As the draw ratio increases, the α relaxation broadens and decreases its intensity, indicating an increasing heterogeneity. We observed slope changes in the α traces, when the temperature decreases below that at which τα≈ 1 s. This may indicate the glass transition from the ‘rubbery' state to the non-equilibrium glassy state.
文摘Formulation of poorly water-soluble crystalline drugs in their amorphous counterpart is a common approach to enhance their biodisponibility. In this study, the amorphous forms of ketoprofen and flurbiprofen were obtained by supercooling of the melt in a DSC (differential scanning calorimetry) apparatus and then investigated, especially under the stability point of view. The average rate of molecular motions at any given temperature is probably the most important parameter to know for amorphous pharmaceutical materials, and it was used to explain and predict the stability of ketoprofen and flurbiprofen. A quantitative estimate of the product's behaviour upon storage is obtained with additional data, such as the heat capacity of crystalline and amorphous samples and the distribution of molecular relaxation times. Amorphous flurbiprofen demonstrated greater physical stability at any aging temperature tested, when compared to ketoprofen and a different dependence from aging temperature. Both amorphous drugs could he classified as "fragile" ones.
基金the National Natural Science Foundation of China
文摘1H spin-spin relaxation time(T2) measurement of polyampholyte hydrogel poly(methylacrylic acidacryloyloxyethyl trimethylammonium chloride)[P(MA-DAC)] in different pH, ionic strength and temperature was carried out to reveal the molecular mobility. Spontaneous volume transition of the polyampholyte hydrogel was also investigated by spin-spin relaxation time measurement. Meanwhile T2 and the proton component fraction were acquired to study the swelling behaviour of the hydrogel. Moreover the changes of T2 characterized the molecular mo- bility of polyampholyte hydrogel in various swelling states. And the results suggest that the mobility of the main chains and a few free side chains(the long T2) of P(MA-DAC) was dominated by the mesh size in the hydrogel net- work, depending on the swelling ratio(Q) and the mobility of the side chains(the short T2) was influenced by electrostatic interaction between different charges in polymer side chains. Finally the T2 measurements of P(MA-DAC) hydrogel in the spontaneous swelling-deswelling process demonstrated the electrostatic interaction of the charged side chains caused deswelling behavior. At the same time, the mobility state transition temperature of the charged side chains was also studied by the lH spin-spin relaxation time measurements, and the transition activation energy of the side chains is 2.72 kJ.