期刊文献+
共找到8,495篇文章
< 1 2 250 >
每页显示 20 50 100
Analysis of Lavandulyl Flavonoids from Sophora flavescens with Antiinflammatory Activity Based on Molecular Network Technology
1
作者 Yan LIN Bo TU +1 位作者 Shanggao LIAO Minghui HE 《Medicinal Plant》 2024年第2期1-5,14,共6页
[Objectives]This study was conducted to screen lavandulyl flavonoids with anti-inflammatory activity from Sophora flavescens.[Methods]35 compounds were screened from traditional Chinese medicine S.flavescens using the... [Objectives]This study was conducted to screen lavandulyl flavonoids with anti-inflammatory activity from Sophora flavescens.[Methods]35 compounds were screened from traditional Chinese medicine S.flavescens using the nitric oxide(NO)anti-inflammatory activity model.[Results]Five components,8(xanthohumol),13(kurarinol),27(4-methoxysalicylic acid),28(b-resorcic acid)and 30(b-resorcic acid),exhibited significant anti-inflammatory activity,with IC 50 values of 5.99,4.76,6.96,3.41 and 5.22μM,respectively.Especially,8(xanthohumol)and 13(kurarinol)were typical lavandulyl flavonoids in S.flavescens,which were worth further exploration.Furthermore,UPLC-Q-Exactive and GNPS molecular networking technique were used for rapid analysis of lavandulyl flavonoids from S.flavescens.A total of 15 components were identified.[Conclusions]This work lays a theoretical foundation for further separation and analysis of lavandulyl flavonoids with anti-inflammatory activity from S.flavescens. 展开更多
关键词 Sophora flavescens molecular network Anti-inflammatory activity Lavandulyl flavonoids
下载PDF
Deciphering bioactive compounds of complex natural products by tandem mass spectral molecular networking combined with an aggregation-induced emission based probe 被引量:2
2
作者 Zhenzhong Yang Jun Li +2 位作者 Xuechun Chen Xiaoping Zhao Yi Wang 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2022年第1期129-135,共7页
Natural products are great treasure troves for the discovery of bioactive components.Current bioassay guided fractionation for identification of bioactive components is time-and workload-consuming.In this study,we pro... Natural products are great treasure troves for the discovery of bioactive components.Current bioassay guided fractionation for identification of bioactive components is time-and workload-consuming.In this study,we proposed a robust and convenient strategy for deciphering the bioactive profile of natural products by mass spectral molecular networking combined with rapid bioassay.As a proof-of-concept,the strategy was applied to identify angiotensin converting enzyme(ACE)inhibitors of Fangjihuangqi decoction(FJHQD),a traditional medicine clinically used for the treatment of heart failure.The chemical profile of FJHQD was comprehensively revealed with the assistance of tandem mass spectral molecular networking,and a total of 165 compounds were identified.With characterized constituents,potential clinical applications of FJHQD were predicted by Bioinformatics Analysis Tool for Molecular mech ANism of Traditional Chinese Medicine,and a range of cardiovascular related diseases were significantly enriched.ACE inhibitory activities of FJHQD and its constituents were then investigated with an aggregation-induced emission based fluorescent probe.FJHQD exhibited excellent ACE inhibitory effects,and a bioactive molecular network was established to elucidate the ACE inhibitory profile of constituents in FJHQD.This bioactive molecular network provided a panoramic view of FJHQD’s ACE inhibitory activities,which demonstrated that flavones from Astragali Radix and Glycyrrhizae Radix et Rhizoma,saponins from Astragali Radix,and sesquiterpenoids from Atractylodis Macrocephalae Rhizoma were principal components responsible for this effect of FJHQD.Among them,four novel ACE inhibitors were the first to be reported.Our study indicated that the proposed strategy offers a useful approach to uncover the bioactive profile of traditional medicines and provides a pragmatic workflow for exploring bioactive components. 展开更多
关键词 Bioactive profile Bioactive molecular network Fangjihuangqi decoction Angiotensin converting enzyme inhibitors
下载PDF
Comprehensive profiling of Lingzhihuang capsule by liquid chromatography coupled with mass spectrometry-based molecular networking and target prediction 被引量:3
3
作者 Mengliang Huang Sijia Yu +5 位作者 Qing Shao Hao Liu Yingchao Wang Hongzhang Chen Yansheng Huang Yi Wang 《Acupuncture and Herbal Medicine》 2022年第1期58-67,共10页
Objective:Lingzhihuang capsule(LZHC)is a natural product that consists of 10 commonly used medicinal plants,and it is used in traditional Chinese medicine to promote people’s overall health.Previously,LZHC was succes... Objective:Lingzhihuang capsule(LZHC)is a natural product that consists of 10 commonly used medicinal plants,and it is used in traditional Chinese medicine to promote people’s overall health.Previously,LZHC was successfully used as adjuvant therapy for treating patients with cancer.However,the chemical constituents of LZHC and their potential biological functions remain unclear.The aim of this study is to investigate the major bioactive compounds in LZHC and predict their pharmacological targets.Methods:The LZHC constituents were putatively identified by ultra-high performance liquid chromatography coupled with timeof-flight mass spectrometry combined with mass spectrometry-based molecular networking.The targets were predicted using SwissTargetPrediction software,and the associated gene ontology and Kyoto encyclopedia of genes and genomes pathways were analyzed using the Database for Annotation,Visualization,and Integrated Discovery.The mass spectrometry-based molecular network and compound-target-pathway network were constructed using Cytoscape 3.8.0 software.Results:We putatively identified 94 compounds of LZHC by mass spectrometry-based molecular networking,including triterpene(the main structural type)and other clusters(ie,flavonoids and organic acids).Our results suggested that multiple pivotal targets were regulated by LZHC,including tumor necrosis factor,nitric oxide synthase 2,glucocorticoid receptor,estrogen receptor,3-oxo-5-alpha-steroid 4-dehydrogenase 2,prostaglandin e2 receptor ep4 subtype,estrogen receptor beta,phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform,mitogen-activated protein kinase 3,and racalpha serine,which are related to signal transduction,positive regulation of transcription from RNA polymerase II promoters,oxidation-reduction processes,inflammatory responses,and other biological processes.Functional annotation of those targets suggested that several signaling pathways may be regulated by LZHC,such as cancer-related proteoglycans,the PI3K-Aktsignaling pathway,and the cAMP-signaling pathway.Conclusions:Our findings reveal the chemical constituents of LZHC and provided scientific support for the efficacy of LZHC in terms of immune regulation,anti-aging,and tumor suppression. 展开更多
关键词 Lingzhihuang capsule molecular networking network pharmacology UPLC-Q-TOF/MS
下载PDF
Chemical diversity of scleractinian corals revealed by untargeted metabolomics and molecular networking
4
作者 Jiying Pei Yuxia Zhou +4 位作者 Shiguo Chen Kefu Yu Zhenjun Qin Ruijie Zhang Yitong Wang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第11期127-135,共9页
The chemical diversity of scleractinian corals is closely related to their physiological,ecological,and evolutionary status,and can be influenced by both genetic background and environmental variables.To investigate i... The chemical diversity of scleractinian corals is closely related to their physiological,ecological,and evolutionary status,and can be influenced by both genetic background and environmental variables.To investigate intraspecific variation in the metabolites of these corals,the metabolomes of four species(Pocillopora meandrina,Seriatopora hystrix,Acropora formosa,and Fungia fungites)from the South China Sea were analyzed using untargeted mass spectrometry-based metabolomics.The results showed that a variety of metabolites,including amino acids,peptides,lipids,and other small molecules,were differentially distributed among the four species,leading to their significant separation in principal component analysis and hierarchical clustering plots.The higher content of storage lipids in branching corals(P.meandrina,S.hystrix,and A.formosa)compared to the solitary coral(F.fungites)may be due to the high densities of zooxanthellae in their tissues.The high content of aromatic amino acids in P.meandrina may help the coral protect against ultraviolet damage and promote growth in shallow seawater,while nitrogen-rich compounds may enable S.hystrix to survive in various challenging environments.The metabolites enriched in F.fungites,including amino acids,dipeptides,phospholipids,and other small molecules,may be related to the composition of the coral's mucus and its life-history,such as its ability to move freely and live solitarily.Studying the chemical diversity of scleractinian corals not only provides insight into their environmental adaptation,but also holds potential for the chemotaxonomy of corals and the discovery of novel bioactive natural products. 展开更多
关键词 scleractinian coral chemical diversity metabolomics molecular networking environmental adaptation
下载PDF
A Novel 3D Supramolecular Network Constructed from [Cu(4,4'-bipyridine)(O_2CMe)_2]_2 Molecular Ladders by Hydrogen Bonding
5
作者 YANG E WANG Xiao-Qin QIN Ye-Yan 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 北大核心 2006年第11期1365-1368,共4页
The title complex, {[Cu2(4,4'-bipyridine)2(μ-O2CMe)2(O2CMe)2],H2O}n 1, was synthesized and structurally characterized by X-ray crystallography. It crystallizes in monoclinic, space group C2/c with a = 13.4474... The title complex, {[Cu2(4,4'-bipyridine)2(μ-O2CMe)2(O2CMe)2],H2O}n 1, was synthesized and structurally characterized by X-ray crystallography. It crystallizes in monoclinic, space group C2/c with a = 13.4474(5), b = 11.7566(2), c = 19.5380(6)A, β = 92.930(2)°, V = 3084.84(16) A^3, Z = 4, Cu2C28N409H30, Mr = 693.64, Dc = 1.494 g/cm^3, F(000) = 1424 and μ(MoKα) = 1.436 mm^-1. With the use of 2062 observed reflections (I 〉 2σ(I)), the structure was refined to R = 0.0769 and wR = 0.2154. In complex 1, the dimeric copper acetate units are linked through 4,4’-bipyridine to yield ID molecular ladders. These ladders are connected via O-H…O hydrogen bonds to generate 2D layers, which are further linked through C-H…O hydrogen bonds to give a 3D supramolecular network. 展开更多
关键词 molecular ladder dimeric copper acetate 3D supramolecular network
下载PDF
Understanding biological functions through molecular networks 被引量:7
6
作者 Han,JD 《Cell Research》 SCIE CAS CSCD 2008年第2期224-237,共14页
The completion of genome sequences and subsequent high-throughput mapping of molecular networks have allowed us to study biology from the network perspective. Experimental, statistical and mathematical modeling approa... The completion of genome sequences and subsequent high-throughput mapping of molecular networks have allowed us to study biology from the network perspective. Experimental, statistical and mathematical modeling approaches have been employed to study the structure, function and dynamics of molecular networks, and begin to reveal important links of various network properties to the functions of the biological systems. In agreement with these functional links, evolutionary selection of a network is apparently based on the function, rather than directly on the structure of the network. Dynamic modularity is one of the prominent features of molecular networks. Taking advantage of such a feature may simplify network-based biological studies through construction of process-specific modular networks and provide functional and mechanistic insights linking genotypic variations to complex traits or diseases, which is likely to be a key approach in the next wave of understanding complex human diseases. With the development of ready-to-use network analysis and modeling tools the networks approaches will be infused into everyday biological research in the near future. 展开更多
关键词 network data integration modularity molecular function genetic variation
下载PDF
Molecular network using molecular circuit for drug delivery use
7
作者 Narongchai Moongfangklang Somsak Mitatha +1 位作者 Surasak Pipatsart Preecha P. Yupapin 《Journal of Biomedical Science and Engineering》 2012年第7期360-368,共9页
A novel design of molecular networks for drug delivery application using a PANDA ring resonator is proposed. By using the intense optical vortices generated within the PANDA ring resonator, the required molecules can ... A novel design of molecular networks for drug delivery application using a PANDA ring resonator is proposed. By using the intense optical vortices generated within the PANDA ring resonator, the required molecules can be trapped and moved (transported) dynamically within the wavelength router and bus networks, in which the required drug delivery can perform within the wavelength router before reaching the required destination. PANDA ring is a modified optical add/drop filter. It is a name of Chinese bear, which is used to name the device by the authors. The advantage of the proposed system is that the drug delivery networks can perform within the tiny system (thin film device), where the large molecular drug networks such as ring, star and bus networks are also proposed, in which the applications such as Alzheimers’ and Parkinson diagnosis, blood circulation networks and in situ surgery operation are discussed. 展开更多
关键词 molecular netWORKS BLOOD CIRCULATION netWORK DRUG netWORKS Neural System and netWORK
下载PDF
Informatics-based prediction of molecular networks targeted by active ingredients in Danshen (Salvia miltiorrhiza)
8
作者 Xin-Qiang Song Mu Zhang +1 位作者 Yu Zhang Er-Qin Dai 《Precision Medicine Research》 2019年第2期44-51,共8页
Salvia miltiorrhiza (Chinese, Danshen) is one of the most famous traditional herbs, and has been used to treat cardiovascular disease. Despite the wide application of Danshen in China, the mechanisms of its bioactive ... Salvia miltiorrhiza (Chinese, Danshen) is one of the most famous traditional herbs, and has been used to treat cardiovascular disease. Despite the wide application of Danshen in China, the mechanisms of its bioactive components are poorly understood. The present study used bioinformatics to identify possible mechanisms by which Danshen treats cardiovascular disease. Possible human protein targets of Danshen were identified in the PubChem database, possible human gene targets of cardiovascular disease were identified in the NCBI database, and then both sets of targets were analyzed using Ingenuity Pathway Analysis to predict molecular networks affected by Danshen in cardiovascular disease. The results suggest that signaling proteins affected by Danshen in cardiovascular disease, which include FASN, PAFAH1B2, PLA2G7, PAFAH1B3 and IL1B, are involved primarily in LXR/RXR activation, atherosclerosis signaling, hepatic fibrosis/hepatic stellate cell activation, acute phase response signaling. The main networks affected by Danshen are predicted to involve in cellular movement, immune cell trafficking, hematological system development and function;DNA replication, recombination, and repair, cancer, hematological disease;cardiovascular disease, organismal injury and abnormalities, tissue morphology.These results identify several specific proteins and pathways that may be affected by Danshen in cardiovascular disease, and they illustrate the power of integrative bioinformatics and chemical fragment analysis for focusing mechanistic studies. 展开更多
关键词 DANSHEN (Salvia miltiorrhiza) CARDIOVASCULAR disease INGENUITY pathwayanalysis BIOINFORMATICS analysis molecular networks
下载PDF
Comparing the mechanism of four classic Gualou-Xiebai prescriptions for cardiovascular diseases with phlegm and blood stasis syndrome based on molecular network modeling
9
作者 Bo Zhang Hua Zhong +2 位作者 Jia-Wei Chen Ya-Rong Liu Hong-Fei Wu 《TMR Pharmacology Research》 2023年第3期33-45,共13页
Background:Four classical Traditional Chinese Medicine prescriptions,namely Gualou Xiebai Baijiu decoction,Gualou Xiebai Banxia decoction(GLXBBX),Zhishi Xiebai Guizhi decoction(ZSXBGZ)and Danlou prescription(DL),have ... Background:Four classical Traditional Chinese Medicine prescriptions,namely Gualou Xiebai Baijiu decoction,Gualou Xiebai Banxia decoction(GLXBBX),Zhishi Xiebai Guizhi decoction(ZSXBGZ)and Danlou prescription(DL),have been frequently used for treatment of phlegm and blood stasis syndrome(PBSS)-related cardiovascular diseases.However,its therapeutic mechanism has not been clearly elucidated.This study aimed to explore PBSS and its molecular mechanism,clarify and compare the mechanisms of four prescriptions in treating PBSS-related diseases.Method:In this study,we collected four prescriptions’compounds,predicted therapeutic targets,and enriched pathways which were based on network pharmacology.Then,we analysed the commen and different mechanisms by combing the network of components,targets and pathways.Finally,molecular docking was engaged to assess the binding potential of key compounds and hub targets.Results:We showed that four prescriptions’intersection genes(VEGFA,SRC,EGFR,etc.)were commonly enriched in PI3K-AKT signaling pathway,HIF-1 signaling pathway,etc.In addition,platelet activation and cAMP signaling pathway were singly enriched from the GLXBBX through unique compounds 12,13-epoxy-9-hydroxynonadeca-7,10-dienoic acid and Cyclo(L-tyrosyl-L-phenylalanyl).These bioactive compounds may exert GLXBBX’s unique pharmacological pathways via involving in mediating PPARA,PTGER3,etc.Sphingolipid signaling pathway was singly enriched from the ZSXBGZ through unique compounds tetramethoxyluteolin,ergosterol peroxide,etc.These bioactive compounds could mediate ADORA1,ADORA3 and TNFRSF1A to regulate ZSXBGZ’s unique pharmacological pathways.AMPK signaling pathway was singly enriched from the DL through unique compounds kaempferol,evofolinb,ethyl acid and aureusidin.These bioactive compounds were involved in mediating the main targets of AMPK signaling pathway,such as TNF,TNFRSF1A,etc.Conclusions:Our research demonstrated that GLXB-prescriptions involved in almost all pathological stages of PBSS-related cardiovascular diseases by modulating high-frequency shared pathways and targets mainly through key compounds(quercetin,mandenol,sitosteryl acetate and luteolin,etc.),for example,participate in the process of atherosclerosis,lipid metabolism,inflammation,immune response,thrombosis,inhibit inflammatory factors and platelet aggregation,regulate immune function,vascular function,oxidative stress.In addition to common pharmacological efficacies,there could also be specificities among GLXB prescriptions due to different compounds.For example,GLXBBX tends to regulate the function of vascular and endothelial barrier,prevent thrombosis.ZSXBGZ tends to regulate lipid metabolism and protect the heart from lipid accumulation.DL tends to maintain energy homeostasis and improve inflammation. 展开更多
关键词 Gualou Xiebai Baijiu decoction Gualou Xiebai Banxia decoction Zhishi Xiebai Guizhi decoction Danlou prescription phlegm and blood stasis syndrome network pharmacology analysis molecular docking
下载PDF
Discovery of unusual phloroglucinol-triterpenoid adducts from Leptospermum scoparium and Xanthostemon chrysanthus by building blocks-based molecular networking 被引量:1
10
作者 Jinyan Zhang Fen Liu +7 位作者 Qian Jin Xueyi Li Qiong Zhan Mu Chen Sisi Wang Zhenlong Wu Wencai Ye Lei Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第6期353-357,共5页
The first phloroglucinol-triterpenoid hybrids,myrtphlotritins A-E(1-5),were rapidly recognized and isolated from two species of Myrtaceae by employing the building blocks-based molecular network(BBMN)strategy.Compound... The first phloroglucinol-triterpenoid hybrids,myrtphlotritins A-E(1-5),were rapidly recognized and isolated from two species of Myrtaceae by employing the building blocks-based molecular network(BBMN)strategy.Compounds 1-5 featured new carbon skeletons in which phloroglucinol derivatives were coupled with lupane-and dammarane-type triterpenoids through different linkage patterns.Their structures and absolute configurations were elucidated by comprehensive analysis of spectroscopic data and quantum chemical calculations.Biosynthetic pathways for compounds 1-5 were proposed on the basis of the coexisting precursors.Guided by the biogenetic pathways,the biomimetic synthesis of compound 1 was also achieved.Additionally,compounds 2,3,and 5 exhibited potent antiviral activities against herpes simplex virus type-1(HSV-1)infection,and compounds 2 and 5 displayed significant anti-inflammatory activities on RAW264.7 cells. 展开更多
关键词 Phloroglucinol-triterpenoid adduct MYRTACEAE Building blocks-based molecular network Biomimetic synthesis Antiviral activity Anti-inflammatory activity
原文传递
Rapid discovery of two unprecedented meroterpenoids from Daphne altaica Pall.using molecular networking integrated with MolNetEnhancer and Network Annotation Propagation
11
作者 Wei-Yu Zhou Zi-Han Xi +7 位作者 Ning-Ning Du Li Ye Ming-Hao Jiang Jin-Le Hao Bin Lin Guo-Dong Yao Xiao-Xiao Huang Shao-Jiang Song 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第8期294-298,共5页
Under the guidance of the approach which integrates molecular networking,MolNetEnhancer and Net-work Annotation Propagation(NAP),daphnaltaicanoids A and B(1 and 2)with unprecedented 9-oxa-tetracyclo[6.6.1.0^(2,6).0^(8... Under the guidance of the approach which integrates molecular networking,MolNetEnhancer and Net-work Annotation Propagation(NAP),daphnaltaicanoids A and B(1 and 2)with unprecedented 9-oxa-tetracyclo[6.6.1.0^(2,6).0^(8,13)]pentadecane and tetracyclo[5.3.0.1^(2,5).2^(4,11)]tridecane central frameworks were iso-lated from Daphne altaica Pall.,representing two types of unparalleled meroterpenoid cores.Their struc-tures were elucidated by extensive spectroscopic analysis,nuclear magnetic resonance(NMR)calcula-tions,DP4+analysis and electronic circular dichroism(ECD)calculations.The plausible biosynthetic path-ways for 1 and 2 were postulated.Biologically,2 exerted potent neuroprotective activities which were su-perior to trolox at 12.5 and 25μmol/L.Moreover,1 and 2 exhibited more noticeable acetylcholinesterase inhibitory activities than donepezil.Molecular docking simulations were performed to explore the inter-molecular interaction of compounds 1 and 2 with acetylcholinesterase.The bioactivity evaluation results highlight the prospects of 1 and 2 as a novel category of neurological agents. 展开更多
关键词 Daphne altaica Pall. molecular networking MolnetEnhancer NAP Unprecedented meroterpenoid frameworks Neuroprotective activities Acetylcholinesterase inhibitors
原文传递
Gates joint locally connected network for accurate and robust reconstruction in optical molecular tomography
12
作者 Minghua Zhao Yahui Xiao +2 位作者 Jiaqi Zhang Xin Cao Lin Wang 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第3期11-22,共12页
Optical molecular tomography(OMT)is a potential pre-clinical molecular imaging technique with applications in a variety of biomedical areas,which can provide non-invasive quantitative three-dimensional(3D)information ... Optical molecular tomography(OMT)is a potential pre-clinical molecular imaging technique with applications in a variety of biomedical areas,which can provide non-invasive quantitative three-dimensional(3D)information regarding tumor distribution in living animals.The construction of optical transmission models and the application of reconstruction algorithms in traditional model-based reconstruction processes have affected the reconstruction results,resulting in problems such as low accuracy,poor robustness,and long-time consumption.Here,a gates joint locally connected network(GLCN)method is proposed by establishing the mapping relationship between the inside source distribution and the photon density on surface directly,thus avoiding the extra time consumption caused by iteration and the reconstruction errors caused by model inaccuracy.Moreover,gates module was composed of the concatenation and multiplication operators of three different gates.It was embedded into the network aiming at remembering input surface photon density over a period and allowing the network to capture neurons connected to the true source selectively by controlling three different gates.To evaluate the performance of the proposed method,numerical simulations were conducted,whose results demonstrated good performance in terms of reconstruction positioning accuracy and robustness. 展开更多
关键词 Optical molecular tomography gates module positioning accuracy ROBUSTNESS
下载PDF
Medication Rules of Hub Herb Pairs for Insomnia and Mechanism of Action:Results of Data Mining,Network Pharmacology,and Molecular Docking
13
作者 Wen-Long Guo Hui-Juan Jiang +2 位作者 Yan-Rong Li Jin-Long Yang Yu-Chan Chen 《Chinese Medical Sciences Journal》 CAS CSCD 2024年第4期249-260,共12页
Objective To explore the medication rules of traditional Chinese medicine(TCM)and mechanism of action of hub herb pairs for treating insomnia.Methods Totally 104 prescriptions were statistically analyzed.The associati... Objective To explore the medication rules of traditional Chinese medicine(TCM)and mechanism of action of hub herb pairs for treating insomnia.Methods Totally 104 prescriptions were statistically analyzed.The association rule algorithm was applied to mine the hub herb pairs.Network pharmacology was utilized to analyze the mechanism of the hub herb pairs,while molecular docking was applied to simulate the interaction between receptors and herb molecules,thereby predicting their binding affinities.Results The most frequently used herbs in TCM prescriptions for treating insomnia included Semen Ziziphi Spinosae,Radix Glycyrrhizae,Radix et Rhizoma Ginseng,and Poria cum Radix Pini.Among them,the most commonly used were the supplementing herbs,followed by heat-clearing,mind-calming,and exterior-releasing ones,with their properties of warm and cold,flavors of sweet,Pungent,and bitter,and meridian tropisms of liver,lungs,spleen,kidneys,heart,and stomach.The hub herb pairs based on the association rules included Radix Astragali-Radix et Rhizoma Ginseng,Rhizoma Chuanxiong-Radix Glycyrrhizae,Seman Platycladi-Semen Ziziphi Spinosae,Pericarpium Citri Reticulatae-Radix Glycyrrhizae,Radix Polygalae-Semen Ziziphi Spinosae,and Radix Astragali-Semen Ziziphi Spinosae.Network pharmacology revealed that the cAMP signaling pathway might play a key role in treating insomnia synergistically with HIF-1 signaling pathway,prolactin signaling pathway,chemical carcinogenesis receptor activation,and PI3K-Akt signaling pathway.Molecular docking indicated that there was good binding between the active ingredients of the hub herb pairs and the hub targets.Conclusions This study identified six hub herb pairs for treating insomnia in TCM.These hub herb pairs may synergistically treat insomnia with HIF-1 signaling pathway,prolactin signaling pathway,chemical carcinogenesis receptor activation,and PI3K-Akt signaling pathway through the cAMP signaling pathway. 展开更多
关键词 medication rules mechanism INSOMNIA data mining herb pairs network pharmacology molecular docking
下载PDF
Ab initio nonadiabatic molecular dynamics study on spin–orbit coupling induced spin dynamics in ferromagnetic metals
14
作者 朱万松 郑镇法 +1 位作者 郑奇靖 赵瑾 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期156-163,共8页
Understanding the photoexcitation induced spin dynamics in ferromagnetic metals is important for the design of photo-controlled ultrafast spintronic device.In this work,by the ab initio nonadiabatic molecular dynamics... Understanding the photoexcitation induced spin dynamics in ferromagnetic metals is important for the design of photo-controlled ultrafast spintronic device.In this work,by the ab initio nonadiabatic molecular dynamics simulation,we have studied the spin dynamics induced by spin–orbit coupling(SOC)in Co and Fe using both spin-diabatic and spin-adiabatic representations.In Co system,it is found that the Fermi surface(E_(F))is predominantly contributed by the spin-minority states.The SOC induced spin flip will occur for the photo-excited spin-majority electrons as they relax to the E_(F),and the spin-minority electrons tend to relax to the EFwith the same spin through the electron–phonon coupling(EPC).The reduction of spin-majority electrons and the increase of spin-minority electrons lead to demagnetization of Co within100 fs.By contrast,in Fe system,the E_(F) is dominated by the spin-majority states.In this case,the SOC induced spin flip occurs for the photo-excited spin-minority electrons,which leads to a magnetization enhancement.If we move the E_(F) of Fe to higher energy by 0.6eV,the E_(F) will be contributed by the spin-minority states and the demagnetization will be observed again.This work provides a new perspective for understanding the SOC induced spin dynamics mechanism in magnetic metal systems. 展开更多
关键词 nonadiabatic molecular dynamics spin dynamics spin–orbit coupling ferromagnetic metal
下载PDF
Comparative study of nudged elastic band and molecular dynamics methods for diffusion kinetics in solid-state electrolytes
15
作者 林啊鸣 石晶 +1 位作者 魏苏淮 孙宜阳 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期96-100,共5页
Considerable efforts are being made to transition current lithium-ion and sodium-ion batteries towards the use of solid-state electrolytes.Computational methods,specifically nudged elastic band(NEB)and molecular dynam... Considerable efforts are being made to transition current lithium-ion and sodium-ion batteries towards the use of solid-state electrolytes.Computational methods,specifically nudged elastic band(NEB)and molecular dynamics(MD)methods,provide powerful tools for the design of solid-state electrolytes.The MD method is usually the choice for studying the materials involving complex multiple diffusion paths or having disordered structures.However,it relies on simulations at temperatures much higher than working temperature.This paper studies the reliability of the MD method using the system of Na diffusion in MgO as a benchmark.We carefully study the convergence behavior of the MD method and demonstrate that total effective simulation time of 12 ns can converge the calculated diffusion barrier to about 0.01 eV.The calculated diffusion barrier is 0.31 eV from both methods.The diffusion coefficients at room temperature are 4.3×10^(-9) cm^(2)⋅s^(−1) and 2.2×10^(-9) cm^(2)⋅s^(−1),respectively,from the NEB and MD methods.Our results justify the reliability of the MD method,even though high temperature simulations have to be employed to overcome the limitation on simulation time. 展开更多
关键词 nudged elastic band method molecular dynamics solid electrolyte ion transport density func-tional theory
下载PDF
Network pharmacology and molecular dynamics study of the effect of the Astragalus-Coptis drug pair on diabetic kidney disease
16
作者 Mo-Yan Zhang Shu-Qin Zheng 《World Journal of Diabetes》 SCIE 2024年第7期1562-1588,共27页
BACKGROUND Diabetic kidney disease(DKD)is the primary cause of end-stage renal disease.The Astragalus-Coptis drug pair is frequently employed in the management of DKD.However,the precise molecular mechanism underlying... BACKGROUND Diabetic kidney disease(DKD)is the primary cause of end-stage renal disease.The Astragalus-Coptis drug pair is frequently employed in the management of DKD.However,the precise molecular mechanism underlying its therapeutic effect remains elusive.AIM To investigate the synergistic effects of multiple active ingredients in the Astragalus-Coptis drug pair on DKD through multiple targets and pathways.METHODS The ingredients of the Astragalus-Coptis drug pair were collected and screened using the TCMSP database and the SwissADME platform.The targets were predicted using the SwissTargetPrediction database,while the DKD differential gene expression analysis was obtained from the Gene Expression Omnibus database.DKD targets were acquired from the GeneCards,Online Mendelian Inheritance in Man database,and DisGeNET databases,with common targets identified through the Venny platform.The protein-protein interaction network and the“disease-active ingredient-target”network of the common targets were constructed utilizing the STRING database and Cytoscape software,followed by the analysis of the interaction relationships and further screening of key targets and core active ingredients.Gene Ontology(GO)function and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichments were performed using the DAVID database.The tissue and organ distributions of key targets were evaluated.PyMOL and AutoDock software validate the molecular docking between the core ingredients and key targets.Finally,molecular dynamics(MD)simulations were conducted to simulate the optimal complex formed by interactions between core ingredients and key target proteins.RESULTS A total of 27 active ingredients and 512 potential targets of the Astragalus-Coptis drug pair were identified.There were 273 common targets between DKD and the Astragalus-Coptis drug pair.Through protein-protein interaction network topology analysis,we identified 9 core active ingredients and 10 key targets.GO and KEGG pathway enrichment analyses revealed that Astragalus-Coptis drug pair treatment for DKD involves various biological processes,including protein phosphorylation,negative regulation of apoptosis,inflammatory response,and endoplasmic reticulum unfolded protein response.These pathways are mainly associated with the advanced glycation end products(AGE)-receptor for AGE products signaling pathway in diabetic complications,as well as the Lipid and atherosclerosis.Molecular docking and MD simulations demonstrated high affinity and stability between the core active ingredients and key targets.Notably,the quercetin-AKT serine/threonine kinase 1(AKT1)and quercetin-tumor necrosis factor(TNF)protein complexes exhibited exceptional stability.CONCLUSION This study demonstrated that DKD treatment with the Astragalus-Coptis drug pair involves multiple ingredients,targets,and signaling pathways.We propose a novel approach for investigating the molecular mechanism underlying the therapeutic effects of the Astragalus-Coptis drug pair on DKD.Furthermore,we suggest that quercetin is the most potent active ingredient and specifically targets AKT1 and TNF,providing a theoretical foundation for further exploration of pharmacologically active ingredients and elucidating their molecular mechanisms in DKD treatment. 展开更多
关键词 Astragalus membranaceus Coptis chinensis Franch Diabetic kidney disease network pharmacology molecular docking molecular dynamics simulation
下载PDF
Identification of anti-gastric cancer effects and molecular mechanisms of resveratrol: From network pharmacology and bioinformatics to experimental validation
17
作者 Ying-Qian Ma Ming Zhang +5 位作者 Zhen-Hua Sun Hong-Yue Tang Ying Wang Jiang-Xue Liu Zhan-Xue Zhang Chao Wang 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第2期493-513,共21页
BACKGROUND Gastric cancer(GC)is one of the most aggressive malignancies with limited therapeutic options and a poor prognosis.Resveratrol,a non-flavonoid poly-phenolic compound found in a variety of Chinese medicinal ... BACKGROUND Gastric cancer(GC)is one of the most aggressive malignancies with limited therapeutic options and a poor prognosis.Resveratrol,a non-flavonoid poly-phenolic compound found in a variety of Chinese medicinal materials,has shown excellent anti-GC effect.However,its exact mechanisms of action in GC have not been clarified.AIM To identify the effects of resveratrol on GC progression and explore the related molecular mechanisms.METHODS Action targets of resveratrol and GC-related targets were screened from public databases.The overlapping targets between the two were confirmed using a Venn diagram,and a“Resveratrol-Target-GC”network was constructed using Cyto-scape software version 3.9.1.The protein-protein interaction(PPI)network was constructed using STRING database and core targets were identified by PPI network analysis.The Database for Annotation,Visualization and Integrated A total of 378 resveratrol action targets and 2154 GC disease targets were obtained from public databases,and 181 intersection targets between the two were screened by Venn diagram.The top 20 core targets were identified by PPI network analysis of the overlapping targets.GO function analysis mainly involved protein binding,identical protein binding,cytoplasm,nucleus,negative regulation of apoptotic process and response to xenobiotic stimulus.KEGG enrichment analysis suggested that the involved signaling pathways mainly included PI3K-AKT signaling pathway,MAPK signaling pathway,IL-17 signaling pathway,TNF signaling pathway,ErbB signaling pathway,etc.FBJ murine osteosarcoma viral oncogene homolog(FOS)and matrix metallopeptidase 9(MMP9)were selected by differential expression analysis,and they were closely associated with immune infiltration.Molecular docking results showed that resveratrol docked well with these two targets.Resveratrol treatment arrested the cell cycle at the S phase,induced apoptosis,and weakened viability,migration and invasion in a dose-dependent manner.Furthermore,resveratrol could exhibit anti-GC effect by regulating FOS and MMP9 expression.CONCLUSION The anti-GC effects of resveratrol are related to the inhibition of cell proliferation,migration,invasion and induction of cell cycle arrest and apoptosis by targeting FOS and MMP9. 展开更多
关键词 RESVERATROL Gastric cancer network pharmacology BIOINFORMATICS molecular docking
下载PDF
Exploring the molecular mechanism of Epimedium brevicornu Maxim.in treating breast cancer via network pharmacology and in vitro experiments
18
作者 Xuan Wang Bin Cui +1 位作者 Liuyan Xu Xiaohua Pei 《Journal of Traditional Chinese Medical Sciences》 CAS 2024年第2期207-221,共15页
Objective:To evaluate the therapeutic effects of Epimedium brevicornu Maxim.(EBM,Yin Yang Huo)on breast cancer using network pharmacology and in vitro validation.It also aimed to explore the novel targets and mechanis... Objective:To evaluate the therapeutic effects of Epimedium brevicornu Maxim.(EBM,Yin Yang Huo)on breast cancer using network pharmacology and in vitro validation.It also aimed to explore the novel targets and mechanisms of EBM in the treatment of breast cancer to facilitate the discovery of new drugs and their clinical application.Methods: Network pharmacology was used to identify and screen the components and targets of EBM for breast cancer treatment.Molecular docking was further screened the effective components and targets of EBM.Wound-healing assays and flow cytometry analysis were used to detect the ability of two compounds to intervene in the migration and apoptosis of MDA-MB-231 cells,and their mechanism of action was further explored using western blotting experiments.Results: EBM contained 19 active components.Among them wereβ-anhydroicaritin(Anhy)and isoliquiritigenin(Iso),which were selected for in vitro experiments.Treatment resulted in a dose-dependent suppression of MDA-MB-231 cell viability,with an IC_(50) of 23.73μmol/L for Iso and 21.28μmol/L for Anhy.In the wound healing assay,cells in Anhy and Iso groups exhibited considerable inhibition of migration at 48 h.In flow cytometry analysis,treatment with Iso(20μmol/L)for 96 h resulted in significantly higher levels of both early and late apoptosis in the Iso group than that in the control group(P=.004 and P=.014,respectively).Additionally,both Iso(20μmol/L)and Anhy(10 and 20μmol/L)induced cell necrosis at 96 h.Western blotting revealed that Anhy and Iso increased the expression of Bax and TBK1/NAK.Conclusion: These findings suggested that Anhy and Iso,the two components of EBM,inhibit MDA-MB-231 cell proliferation and migration of and induce their apoptosis,providing substantial support for future studies on breast cancer. 展开更多
关键词 Breast cancer Epimedium brevicornu Maxim molecular docking β-Anhydroicaritin ISOLIQUIRITIGENIN Flow cytometry MDA-MB-231
下载PDF
Exploring the potential mechanism of WuFuYin against hypertrophic scar using network pharmacology and molecular docking
19
作者 Shu-Yang Zhang Song-Xue Guo +4 位作者 Lei-Lei Chen Jia-Yan Zhu Ming-Sheng Hou Jia-Ke Lu Xue-Xiang Shen 《World Journal of Clinical Cases》 SCIE 2024年第18期3505-3514,共10页
BACKGROUND Hypertrophic scar(HTS)is dermal fibroproliferative disorder,which may cause physiological and psychological problems.Currently,the potential mechanism of WuFuYin(WFY)in the treatment of HTS remained to be e... BACKGROUND Hypertrophic scar(HTS)is dermal fibroproliferative disorder,which may cause physiological and psychological problems.Currently,the potential mechanism of WuFuYin(WFY)in the treatment of HTS remained to be elucidated.AIM To explore the potential mechanism of WFY in treating HTS.METHODS Active components and corresponding targets were retrieved from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform.HTSrelated genes were obtained from the GeneCards,DisGeNET,and National Center for Biotechnology Information.The function of targets was analyzed by performing Gene Ontology and Kyoto Encyclopaedia of Genes and Genome(KEGG)enrichment analysis.A protein+IBM-protein interaction(PPI)network was developed using STRING database and Cytoscape.To confirm the high affinity between compounds and targets,molecular docking was performed.RESULTS A total of 65 core genes,which were both related to compounds and HTS,were selected from multiple databases.PPI analysis showed that CKD2,ABCC1,MMP2,MMP9,glycogen synthase kinase 3 beta(GSK3B),PRARG,MMP3,and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma(PIK3CG)were the hub targets and MOL004941,MOL004935,MOL004866,MOL004993,and MOL004989 were the key compounds of WFY against HTS.The results of KEGG enrichment analysis demonstrated that the function of most genes were enriched in the PI3K-Akt pathway.Moreover,by performing molecular docking,we confirmed that GSK3B and 8-prenylated eriodictyol shared the highest affinity.CONCLUSION The current findings showed that the GSK3B and cyclin dependent kinase 2 were the potential targets and MOL004941,MOL004989,and MOL004993 were the main compounds of WFY in HTS treatment. 展开更多
关键词 WuFuYin Hypertrophic scar network pharmacology molecular docking Enrichment analysis
下载PDF
Network pharmacology combined with molecular docking revealed the potential targets of Coridius chinensis in prostate cancer treatment
20
作者 Mei Zhang Jing Ma +1 位作者 Feng-Yin Zeng Xiao-Hui Hou 《World Journal of Clinical Cases》 SCIE 2024年第27期6094-6104,共11页
BACKGROUND Prostate cancer(PCa)has high morbidity and mortality rates in elderly men.With a history of thousands of years,traditional Chinese medicine derived from insects could be an important source for developing c... BACKGROUND Prostate cancer(PCa)has high morbidity and mortality rates in elderly men.With a history of thousands of years,traditional Chinese medicine derived from insects could be an important source for developing cancer-targeted drugs to prevent tumorigenesis,enhance therapeutic effects,and reduce the risk of recurrence and metastasis.Multiple studies have shown that Coridius chinensis(Cc)has anticancer effects.AIM To elucidate the mechanism of action of Cc against PCa via network pharma-cology and molecular docking.METHODS Potential targets for Cc and PCa were predicted using ChemDraw 19.0 software,the PharmMapper database and the GeneCards database.Then,the STRING database was used to construct the protein–protein interaction network.Gene Ontology(GO),Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment and molecular docking analyses were subsequently conducted to identify the key targets,active ingredients and pathways involved.RESULTS GO and KEGG analyses indicated that the PI3K-Akt signalling pathway was the critical pathway(P value<1.0×10-8).Multiple targeting ingredients that can affect multiple pathways in PCa have been identified in Cc.Seven active compounds(asponguanosines A,asponguanine B,asponguanine C,aspong-pyrazine A,N-acetyldopamine,aspongadenine B and aspongpyrazine B)were selected for molecular docking with 9 potential targets,and the results revealed that aspongpyrazine A and asponguanosine A are the main components by which Cc affects PCa(affinity<-5 kcal/mol,hydrogen bonding),but more studies are needed.CONCLUSION We used network pharmacology to predict the bioactive components and important targets of Cc for the treatment of PCa,supporting the development of Cc as a natural anticancer agent. 展开更多
关键词 Coridius chinensis molecular docking network pharmacology Prostate cancer Traditional Chinese medicine
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部