Novel graphene-like boron nitride(BN)/Bi_(3)O_(4)Br photocatalysts have been controllably synthesized through a facile solvothermal method for the first time. Layer contact stacking between graphene-like BN and ultrat...Novel graphene-like boron nitride(BN)/Bi_(3)O_(4)Br photocatalysts have been controllably synthesized through a facile solvothermal method for the first time. Layer contact stacking between graphene-like BN and ultrathin Bi_(3)O_(4)Br was achieved with strong interaction. Dehalogenation is designed to harvest more visible light, and the ultrathin structure of Bi_(3)O_(4)Br is designed to accelerate charge transfer from inside to the surface. After graphene-like BN was engineered, photocatalytic performance greatly improved under visible light irradiation. Graphene-like BN can act as a surface electron-withdrawing center and adsorption center, facilitating molecular oxygen activation. O_(2)^(·-)was determined to be the main active species during the degradation process through analyses of electron spin resonance and XPS valence band spectra.展开更多
Fe single-atom catalysts(Fe-SACs)have been extensively studied as a highly efficient electrocatalyst toward the oxygen reduction reaction(ORR).Nonetheless,they suffer from stability issue induced by dissolution of Fe ...Fe single-atom catalysts(Fe-SACs)have been extensively studied as a highly efficient electrocatalyst toward the oxygen reduction reaction(ORR).Nonetheless,they suffer from stability issue induced by dissolution of Fe metal center and the OH^(−)blocking.Herein,a surface molecular engineering strategy is developed by usingβ-cyclodextrins(CDs)as a localized molecular encapsulation.The CD-modified Fe-SAC(Fe-SNC-β-CD)shows obviously improved activity toward the ORR with 0.90 V,4.10 and 4.09 mA cm^(-2)for E_(1/2),J_(0)and Jk0.9,respectively.Meanwhile,the Fe-SNC-β-CD shows the excellent long-term stability against aggressive stress and the poisoning.It is confirmed through electrochemical investigation that modification ofβ-CD can,on one hand,regulate the atomic Fe coordination chemistry through the interaction between the CD and FeN_(x) moiety,while on the other mitigate the strong adsorption of OH^(−)and function as protective barrier against the poisoning molecules leading to enhanced ORR activity and stability for the Fe-SACs.The molecular encapsulation strategy demonstrates the uniqueness of post-pyrolysis surface molecular engineering for the design of single-atom catalyst.展开更多
The structure of liquid water is primarily composed of three-dimensional networks of water clusters formed by hydrogen bonds,and dis-solved oxygen is one of the most important indicators for assessing water qual-ity.I...The structure of liquid water is primarily composed of three-dimensional networks of water clusters formed by hydrogen bonds,and dis-solved oxygen is one of the most important indicators for assessing water qual-ity.In this work,distilled water with different concentration of dissolved oxygen were prepared,and a clear negative correlation between the size of water clus-ters and dissolved oxygen concentration was observed.Besides,a phenomenon of rapid absorption and release of oxygen at the water interfaces was unveiled,suggesting that oxygen molecules predominantly exist at the interfaces of water clusters.Oxygen molecules can move rapidly through the interfaces among water clusters,allowing dissolved oxygen to quickly reach a saturation level at certain partial pressure of oxygen and temperature.Further exploration into the mechanism by molecular dynamics simulations of oxygen and water clusters found that oxygen molecules can only exist stably at the interfaces among water clusters.A semi-empirical formula relating the average number of water molecules in a cluster(n)to ^(17)O NMR half-peak width(W)was summarized:n=0.1 W+0.85.These findings provide a foundation for exploring the structure and properties of water.展开更多
A mathematical model for simulating concentric-bed and other components of molecular sieve oxygen concentrator is established. In the model, the binary Langmuir equilibrium adsorption equation is adopted to describe t...A mathematical model for simulating concentric-bed and other components of molecular sieve oxygen concentrator is established. In the model, the binary Langmuir equilibrium adsorption equation is adopted to describe the adsorption performance of the adsorbent, the linear driving force (LDF) model is used to describe the mass transfer rate, and the thermal effect during adsorption is considered. The finite difference method is used in simulation and comparison. Numerical results have a reasonable agreement with the experimental research.展开更多
Silicoaluminophosphate(SAPO) molecular sieves doped with cobalt(Co-SAPO-5) were synthesized hydrothermally with different concentrations of Co.Each sample was characterized by X-ray diffraction,N2 adsorption-desor...Silicoaluminophosphate(SAPO) molecular sieves doped with cobalt(Co-SAPO-5) were synthesized hydrothermally with different concentrations of Co.Each sample was characterized by X-ray diffraction,N2 adsorption-desorption,scanning electron microscopy,ultraviolet-visible spectroscopy,temperature-programmed desorption of NH3(NH3-TPD),and infrared spectrascopy of adsorbed pyridine(Py-IR).The results showed that Co was highly dispersed in the Co-SAPO-5 samples.In addition,a part of the Co content had been incorporated into the SAPO-5 framework,while the remainder existed on the surface as extra-framework Co.The surface areas of the Co-SAOP-5 samples were similar to the SAPO-5 sample.However,the pore volumes of the Co-SAOP-5 samples were lower than that of the SAOP-5 sample.As the concentration of Co increased,the pore volume gradually decreased because extra-framework cobalt oxide was present on the catalyst surface.NH3-TPD and Py-IR results revealed that the amount of Br(?)nsted acid and the total amount of acid for the Co-SAPO-5 samples were higher than that for the SAPO-5 sample.These values were also higher for samples with higher Co content.The catalytic activity of the Co-SAPO-5 samples was evaluated for the oxidation of cyclohexane with molecular oxygen.When Co was added to the SAPO-5 catalyst,the catalytic activity of the Co-SAPO-5 catalysts improved.In addition,the conversion of cyclohexane increased as the Co content in the Co-SAPO-5 catalysts increased.However,with a high conversion of cyclohexane(6.30%),the total selectivity of cyclohexanone(K) and cyclohexanol(A) decreased sharply.The K/A ratio ranged from 1.15 to 2.47.The effects of reaction conditions(i.e.,reaction temperature,reaction time,initial oxygen pressure,and the catalyst amount) on the performance of the Co-SAPO-5 catalysts have also been measured.Furthermore,the stability of the Co-SAPO-5 catalyst was explored and found to be good for the selective oxidation of cyclohexane by molecular oxygen.展开更多
This paper reported the oxidation of ethylbenzene catalyzed by fluorinated metalloporphyrins under mild conditions without any additives. The results showed that the cobalt(II)(5,10,15,20-tetrakis(pentafluorophenyl))p...This paper reported the oxidation of ethylbenzene catalyzed by fluorinated metalloporphyrins under mild conditions without any additives. The results showed that the cobalt(II)(5,10,15,20-tetrakis(pentafluorophenyl))porphyrin was the best catalyst among the fluorinated metalloporphyrins. The conversion of ethylbenzene reached 38.6%, the selectivity to acetophenone reached 94.0%, and the turnover number is 2719 under the optimal conditions.展开更多
Preparation of dispersed transition metal oxides catalyst with low oxidation state still remains a challenging task in heterogeneous catalysis.In this study,vanadium oxides supported on zeolite SBA-15 have been prepar...Preparation of dispersed transition metal oxides catalyst with low oxidation state still remains a challenging task in heterogeneous catalysis.In this study,vanadium oxides supported on zeolite SBA-15 have been prepared under hydrothermal condition using V 2 O 5 and oxalic acid as sources of vanadium and reductant,respectively.The structures of samples,especially the oxidation state of vanadium,and the surface distribution of vanadium oxide species,have been thoroughly characterized using various techniques,including N 2-physisorption,X-ray diffraction(XRD),transmission electron microscopy(TEM),X-ray photoelectron spectroscopy(XPS),UV-visible spectra(UV-Vis) and UV-visible-near infrared spectra(UV-Vis-NIR).It is found that the majority of supported vanadium was in the form of vanadium(IV) oxide species with the low valence of vanadium.By adjusting hydrothermal treatment time,the surface distribution of vanadium(IV) oxide species can be tuned from vanadium(IV) oxide cluster to crystallites.These materials have been tested in the hydroxylation of benzene to phenol in liquid-phase with molecular oxygen in the absence of reductant.The catalyst exhibits high selectivity for phenol(61%) at benzene conversion of 4.6%,which is a relatively good result in comparison with other studies employing molecular oxygen as the oxidant.展开更多
Molecular dynamics simulation has been performed to determine the infinite-dilution diffusion coefficients of oxygen and nitrogen, and the diffusion coefficients of NaCl in supercritical water from 703.2-763.2 K and 3...Molecular dynamics simulation has been performed to determine the infinite-dilution diffusion coefficients of oxygen and nitrogen, and the diffusion coefficients of NaCl in supercritical water from 703.2-763.2 K and 30-45 MPa. The results obtained show that the diffusion coefficients in supercritical water increase with temperature, while decrease with pressure. Nevertheless, the diffusion coefficients in supercritical water are much larger than those in normal water.展开更多
To improve the photocatalytic oxidation reaction activity for NO removal, photocatalysts with excellent activity are required to activate molecular oxygen. Solid solution and heterojunction were suggested as effective...To improve the photocatalytic oxidation reaction activity for NO removal, photocatalysts with excellent activity are required to activate molecular oxygen. Solid solution and heterojunction were suggested as effective strategies to enhance the molecular oxygen activation viaexciton and carrier photocatalysis. In this study, a solid solution and heterojunction containing BiOBr0.5I0.5/BiOI catalyst was synthesized, and it showed improved photocatalytic activity for removing NO. The photocatalytic NO removal mechanism indicated that synergistic effects between the solid solution and heterojunction induced the enhanced activity for molecular oxygen activation. The photogenerated holes, superoxide, and singlet oxygen generated by the carrier and exciton photocatalysis supported the high photocatalytic NO removal efficiency. This study provides new ideas for designing efficient Bi-O-X(X = Cl, Br, I) photocatalysts for oxidation reactions.展开更多
Water oxidation is one of the most important reactions in natural and artificial energy conversion schemes.In nature,solar energy is converted to chemical energy via water oxidation at the oxygen-evolving center of ph...Water oxidation is one of the most important reactions in natural and artificial energy conversion schemes.In nature,solar energy is converted to chemical energy via water oxidation at the oxygen-evolving center of photosystem II to generate dioxygen,protons,and electrons.In artificial energy schemes,water oxidation is one of the half reactions of water splitting,which is an appealing strategy for energy conversion via photocatalytic,electrocatalytic,or photoelectrocatalytic processes.Because it is thermodynamically unfavorable and kinetically slow,water oxidation is the bottleneck for achieving large-scale water splitting.Thus,developing highly efficient water oxidation catalysts has attracted the interests of researchers in the past decades.The formation of O-O bonds is typically the rate-determining step of the water oxidation catalytic cycle.Therefore,better understanding this key step is critical for the rational design of more efficient catalysts.This review focuses on elucidating the evolution of metal-oxygen species during transition metal-catalyzed water oxidation,and more importantly,on discussing the feasible O-O bond formation mechanisms during the oxygen evolution reaction over synthetic molecular catalysts.展开更多
Ag‐Cu‐Cl/BaCO3 catalysts with different Cl and Cu loadings, prepared by the reduction deposition impregnation method, were investigated for gas‐phase epoxidation of propylene by molecular oxygen and characterized b...Ag‐Cu‐Cl/BaCO3 catalysts with different Cl and Cu loadings, prepared by the reduction deposition impregnation method, were investigated for gas‐phase epoxidation of propylene by molecular oxygen and characterized by X‐ray diffraction, X‐ray photoelectron spectroscopy and O2 temperatureprogrammed desorption. Ag‐Cu‐Cl/BaCO3 catalyst with 0.036 wt% Cu and 0.060 wt% Cl exhibitedthe highest catalytic performance for gas‐phase epoxidation of propylene by molecular oxygen. Apropylene oxide selectivity of 83.7% and propylene conversion of 1.2% were achieved under thereaction conditions of 20% C3H6‐10% O2‐70% N2, 200 °C, 0.1 MPa and 3000 h?1. Increasing the Clloading allowed Ag to ensemble easier, whereas changing the Cu loading showed little effect on Agcrystallite size. The appropriate Cl loading of Ag‐Cu‐Cl/BaCO3 catalyst can reduce the dissociationadsorption of oxygen to atomic oxygen species leading to the combustion of propylene to CO2, whichbenefits epoxidation of propylene by molecular oxygen. Excessive Cl loading of Ag‐Cu‐Cl/BaCO3catalyst decreases propylene conversion and propylene oxide selectivity remarkably because of Clpoisoning. The appropriate Cu loading of Ag‐Cu‐Cl/BaCO3 catalyst is efficient for the epoxidation ofpropylene by molecular oxygen, and an excess Cu loading decreases propylene oxide selectivitybecause the aggregation of Cu species increases the exposed surfaces of Ag nanoparticles, whichwas shown by slight increases in atomic oxygen species adsorbed. The appropriate loadings of Cu and Cl of Ag‐Cu‐Cl/BaCO3 catalyst are important to strike the balance between molecular oxygen and atomic oxygen species to create a favorable epoxidation of propylene by molecular oxygen.展开更多
In this work,the tunable introduction of oxygen vacancies in bismuth tungstate was realized via asimple solvothermal method with the assistance of iodine doping.With the predictions afforded bytheoretical calculations...In this work,the tunable introduction of oxygen vacancies in bismuth tungstate was realized via asimple solvothermal method with the assistance of iodine doping.With the predictions afforded bytheoretical calculations,the as-prepared bismuth tungstate was characterized using various tech-niques,such as X-ray diffraction,Raman spectroscopy,scanning electron microscopy,transmissionelectron microscopy,X-ray photoelectron spectroscopy,electron spin resonance spectroscopy,anduV-Vis diffuse reflectance spectroscopy.The different concentrations of the oxygen vacancies onbismuth tungstate were found to be intensely correlated with iodine doping,which weakened thelattice oxygen bonds.Owing to the sufficient oxygen vacancies introduced in bismuth tungstate as aresult of iodine doping,the molecular oxygen activation was remarkably enhanced,thus endowingbismuth tungstate with high activity for the photocatalytic degradation of sodium pentachloro-phenate.More encouraging is the total organic carbon removal rate of sodium pentachlorophenateover iodine-doped bismuth tungstate that exceeded 90%in only 2 h and was 10.6 times higher thanthat of the pristine bismuth tungstate under visible light irradiation.Moreover,the mechanism,through which the degradation of sodium pentachlorophenate over iodine-doped bismuth tung-state is enhanced,was speculated based on the results of radical detection and capture experiments.This work provides a new perspective for the enhanced photocatalytic degradation of organochlo-rine pesticides from the oxygen vacancy-induced molecular oxygen activation over iodine-dopedbismuth tungstate.展开更多
Conventional fiber reinforced plastics(FRPs)have compatibility issues with solid oxygen while used as a fuel tank,which might cause combustion and explosion.To study the compatibility of different epoxy resins with li...Conventional fiber reinforced plastics(FRPs)have compatibility issues with solid oxygen while used as a fuel tank,which might cause combustion and explosion.To study the compatibility of different epoxy resins with liquid oxygen,molecular dynamics was used to simulate the phase changes of cross-linked epoxy resins under the impact of solid oxygen.Three curing resin systems,which are bisphenol A epoxy resin(DGEBA),bisphenol F epoxy resin(DGEBF),and tetrahydrophthalate diglycidyl ester(epoxy resin 711),are modeled to investigate the rational material system for the application of fuel tanks in launching vehicles.The simulation results show that the order of solid oxygen compatibility of these epoxy resins is DGEBA>DGEBF>epoxy resin 711 at the same density of crosslinking.The selection of curing agent also has an impact on the compatibility,with the same epoxy,diaminodiphenyl methane(DDM)has more advanced performance comparing to diaminodiphenyl sulfone(DDS).展开更多
The oxidation of styrene with molecular oxygen catalyzed by PdCl2+CuCl2 has been investigated in supercritical CO2 with a batch reactor. The oxidative system of styrene contains four components at the beginning and s...The oxidation of styrene with molecular oxygen catalyzed by PdCl2+CuCl2 has been investigated in supercritical CO2 with a batch reactor. The oxidative system of styrene contains four components at the beginning and seven components during the reaction. The critical temperature, critical pressure, and critical density at different conversions are determined by using a high-pressure view cell. The effect of phase behavior on the conversion and selectivity were studied. Experimental results showed that the critical parameters of the reaction mixture at fixed initial molar ratio changed with the conversion of reactant. The conversion of styrene reached maximum near the critical density of the reaction mixture. Product selectivity also varied with density of reaction mixture and could be tuned to some degree.展开更多
In an alkaline 2-propanol solution with 5,10,15,20-tetra(4-methoxyl phenyl) porphyrin iron chloride(TOMPPFeCl) as a catalyst and oxygen as a cheap green oxidant, 2-naphthol was conversed to 2-hydroxy-\{1,4-naphthoquin...In an alkaline 2-propanol solution with 5,10,15,20-tetra(4-methoxyl phenyl) porphyrin iron chloride(TOMPPFeCl) as a catalyst and oxygen as a cheap green oxidant, 2-naphthol was conversed to 2-hydroxy-\{1,4-naphthoquinone(HNQ)\} with a yield of 62.17% and a selectivity of 100%, and the conversion number of TMOPPFeCl catalyst was 8.32/min. The catalytic oxidation products were characterized by means of UV-Vis, IR, GC-MS, ~ 1H NMR and melting point determination. In this catalytic oxidation, the catalytic activity of TMOPPFeCl was researched in detail and the reacting conditions were optimized. A possible reaction mechanism is summarized based on in situ EPR determination.展开更多
Electrocatalytic oxygen reduction and evolution reactions are involved in new energy conversion and storage technologies,such as various fuel cells and metal-air batteries and also water splitting devices[1,2].However...Electrocatalytic oxygen reduction and evolution reactions are involved in new energy conversion and storage technologies,such as various fuel cells and metal-air batteries and also water splitting devices[1,2].However,both reactions are very slow in kinetics,and thus catalysts are required[3,4].展开更多
The reaction of triplet fusion,also named triplet-triplet annihilation,has attracted a lot of research interests because of its wide applications in photocatalytic,solar cells,and bioimaging.As for the singlet oxygen ...The reaction of triplet fusion,also named triplet-triplet annihilation,has attracted a lot of research interests because of its wide applications in photocatalytic,solar cells,and bioimaging.As for the singlet oxygen photosensitization,the reactive singlet oxygen species are generated through the energy transfers from photosensitizer(PS)to ground triplet oxygen molecule.In this work,we computed the electronic coupling for singlet oxygen photosensitization using the nonadiabatic coupling from the quantum chemical calculation.Then we utilized the molecular orbital(MO)overlaps to approximate it,where the MOs were computed from isolated single molecules.As demonstrated with quantitative results,this approach well describes the distribution of the coupling strength as the function of the intermolecular distance between the sensitizer and O_(2),providing us a simple but effective way to predict the coupling of triplet fusion reactions.展开更多
One of the primary challenges in relation to phosphoric acid fuel cells is catalyst poisoning by phosphate anions that occurs at the interface between metal nanoparticles and the electrolyte.The strong adsorption of p...One of the primary challenges in relation to phosphoric acid fuel cells is catalyst poisoning by phosphate anions that occurs at the interface between metal nanoparticles and the electrolyte.The strong adsorption of phosphate anions on the catalyst surface limits the active sites for the oxygen reduction reaction(ORR),significantly deteriorating fuel cell performance.Here,antipoisoning catalysts consisting of Pt-based nanoparticles encapsulated in an ultrathin carbon shell that can be used as a molecular sieve layer are rationally designed.The pore structure of the carbon shells is systematically regulated at the atomic level by high-temperature gas treatment,allowing O_(2) molecules to selectively react on the active sites of the metal nanoparticles through the molecular sieves.Besides,the carbon shell,as a protective layer,effectively prevents metal dissolution from the catalyst during a long-term operation.Consequently,the defect-controlled carbon shell leads to outstanding ORR activity and durability of the hybrid catalyst even in phosphoric acid electrolytes.展开更多
基金financially supported by the Fundamental Research Funds for the Central Universities (No.30922010302)the Start-Up Grant from Nanjing University of Science and Technology (AE89991/397)。
文摘Novel graphene-like boron nitride(BN)/Bi_(3)O_(4)Br photocatalysts have been controllably synthesized through a facile solvothermal method for the first time. Layer contact stacking between graphene-like BN and ultrathin Bi_(3)O_(4)Br was achieved with strong interaction. Dehalogenation is designed to harvest more visible light, and the ultrathin structure of Bi_(3)O_(4)Br is designed to accelerate charge transfer from inside to the surface. After graphene-like BN was engineered, photocatalytic performance greatly improved under visible light irradiation. Graphene-like BN can act as a surface electron-withdrawing center and adsorption center, facilitating molecular oxygen activation. O_(2)^(·-)was determined to be the main active species during the degradation process through analyses of electron spin resonance and XPS valence band spectra.
基金the National Natural Science Foundation of China(52171199)for the financial support.
文摘Fe single-atom catalysts(Fe-SACs)have been extensively studied as a highly efficient electrocatalyst toward the oxygen reduction reaction(ORR).Nonetheless,they suffer from stability issue induced by dissolution of Fe metal center and the OH^(−)blocking.Herein,a surface molecular engineering strategy is developed by usingβ-cyclodextrins(CDs)as a localized molecular encapsulation.The CD-modified Fe-SAC(Fe-SNC-β-CD)shows obviously improved activity toward the ORR with 0.90 V,4.10 and 4.09 mA cm^(-2)for E_(1/2),J_(0)and Jk0.9,respectively.Meanwhile,the Fe-SNC-β-CD shows the excellent long-term stability against aggressive stress and the poisoning.It is confirmed through electrochemical investigation that modification ofβ-CD can,on one hand,regulate the atomic Fe coordination chemistry through the interaction between the CD and FeN_(x) moiety,while on the other mitigate the strong adsorption of OH^(−)and function as protective barrier against the poisoning molecules leading to enhanced ORR activity and stability for the Fe-SACs.The molecular encapsulation strategy demonstrates the uniqueness of post-pyrolysis surface molecular engineering for the design of single-atom catalyst.
基金funding support from National Natural Science Foundation of China(Project No.61574091)Wuxi River and Lake Management and Water Resources Management Center(Project No.JSXXCG2022-004).
文摘The structure of liquid water is primarily composed of three-dimensional networks of water clusters formed by hydrogen bonds,and dis-solved oxygen is one of the most important indicators for assessing water qual-ity.In this work,distilled water with different concentration of dissolved oxygen were prepared,and a clear negative correlation between the size of water clus-ters and dissolved oxygen concentration was observed.Besides,a phenomenon of rapid absorption and release of oxygen at the water interfaces was unveiled,suggesting that oxygen molecules predominantly exist at the interfaces of water clusters.Oxygen molecules can move rapidly through the interfaces among water clusters,allowing dissolved oxygen to quickly reach a saturation level at certain partial pressure of oxygen and temperature.Further exploration into the mechanism by molecular dynamics simulations of oxygen and water clusters found that oxygen molecules can only exist stably at the interfaces among water clusters.A semi-empirical formula relating the average number of water molecules in a cluster(n)to ^(17)O NMR half-peak width(W)was summarized:n=0.1 W+0.85.These findings provide a foundation for exploring the structure and properties of water.
文摘A mathematical model for simulating concentric-bed and other components of molecular sieve oxygen concentrator is established. In the model, the binary Langmuir equilibrium adsorption equation is adopted to describe the adsorption performance of the adsorbent, the linear driving force (LDF) model is used to describe the mass transfer rate, and the thermal effect during adsorption is considered. The finite difference method is used in simulation and comparison. Numerical results have a reasonable agreement with the experimental research.
基金supported by the National Basic Research Program of China(2010CB732300)the National Natural Science Foundation of China(21103048)~~
文摘Silicoaluminophosphate(SAPO) molecular sieves doped with cobalt(Co-SAPO-5) were synthesized hydrothermally with different concentrations of Co.Each sample was characterized by X-ray diffraction,N2 adsorption-desorption,scanning electron microscopy,ultraviolet-visible spectroscopy,temperature-programmed desorption of NH3(NH3-TPD),and infrared spectrascopy of adsorbed pyridine(Py-IR).The results showed that Co was highly dispersed in the Co-SAPO-5 samples.In addition,a part of the Co content had been incorporated into the SAPO-5 framework,while the remainder existed on the surface as extra-framework Co.The surface areas of the Co-SAOP-5 samples were similar to the SAPO-5 sample.However,the pore volumes of the Co-SAOP-5 samples were lower than that of the SAOP-5 sample.As the concentration of Co increased,the pore volume gradually decreased because extra-framework cobalt oxide was present on the catalyst surface.NH3-TPD and Py-IR results revealed that the amount of Br(?)nsted acid and the total amount of acid for the Co-SAPO-5 samples were higher than that for the SAPO-5 sample.These values were also higher for samples with higher Co content.The catalytic activity of the Co-SAPO-5 samples was evaluated for the oxidation of cyclohexane with molecular oxygen.When Co was added to the SAPO-5 catalyst,the catalytic activity of the Co-SAPO-5 catalysts improved.In addition,the conversion of cyclohexane increased as the Co content in the Co-SAPO-5 catalysts increased.However,with a high conversion of cyclohexane(6.30%),the total selectivity of cyclohexanone(K) and cyclohexanol(A) decreased sharply.The K/A ratio ranged from 1.15 to 2.47.The effects of reaction conditions(i.e.,reaction temperature,reaction time,initial oxygen pressure,and the catalyst amount) on the performance of the Co-SAPO-5 catalysts have also been measured.Furthermore,the stability of the Co-SAPO-5 catalyst was explored and found to be good for the selective oxidation of cyclohexane by molecular oxygen.
文摘This paper reported the oxidation of ethylbenzene catalyzed by fluorinated metalloporphyrins under mild conditions without any additives. The results showed that the cobalt(II)(5,10,15,20-tetrakis(pentafluorophenyl))porphyrin was the best catalyst among the fluorinated metalloporphyrins. The conversion of ethylbenzene reached 38.6%, the selectivity to acetophenone reached 94.0%, and the turnover number is 2719 under the optimal conditions.
基金supported by the National Nature Science Foundation of China (21073184 and 21103175)One Hundred Person Project of the Chinese Academy of Sciences
文摘Preparation of dispersed transition metal oxides catalyst with low oxidation state still remains a challenging task in heterogeneous catalysis.In this study,vanadium oxides supported on zeolite SBA-15 have been prepared under hydrothermal condition using V 2 O 5 and oxalic acid as sources of vanadium and reductant,respectively.The structures of samples,especially the oxidation state of vanadium,and the surface distribution of vanadium oxide species,have been thoroughly characterized using various techniques,including N 2-physisorption,X-ray diffraction(XRD),transmission electron microscopy(TEM),X-ray photoelectron spectroscopy(XPS),UV-visible spectra(UV-Vis) and UV-visible-near infrared spectra(UV-Vis-NIR).It is found that the majority of supported vanadium was in the form of vanadium(IV) oxide species with the low valence of vanadium.By adjusting hydrothermal treatment time,the surface distribution of vanadium(IV) oxide species can be tuned from vanadium(IV) oxide cluster to crystallites.These materials have been tested in the hydroxylation of benzene to phenol in liquid-phase with molecular oxygen in the absence of reductant.The catalyst exhibits high selectivity for phenol(61%) at benzene conversion of 4.6%,which is a relatively good result in comparison with other studies employing molecular oxygen as the oxidant.
基金Supported by the National Natural Science Foundation of China under Grant No.29736170the Fundamental Research Foundation of Tsinghua University(No.JC1999038)and the Graduate School of Tsinghua University.
文摘Molecular dynamics simulation has been performed to determine the infinite-dilution diffusion coefficients of oxygen and nitrogen, and the diffusion coefficients of NaCl in supercritical water from 703.2-763.2 K and 30-45 MPa. The results obtained show that the diffusion coefficients in supercritical water increase with temperature, while decrease with pressure. Nevertheless, the diffusion coefficients in supercritical water are much larger than those in normal water.
文摘To improve the photocatalytic oxidation reaction activity for NO removal, photocatalysts with excellent activity are required to activate molecular oxygen. Solid solution and heterojunction were suggested as effective strategies to enhance the molecular oxygen activation viaexciton and carrier photocatalysis. In this study, a solid solution and heterojunction containing BiOBr0.5I0.5/BiOI catalyst was synthesized, and it showed improved photocatalytic activity for removing NO. The photocatalytic NO removal mechanism indicated that synergistic effects between the solid solution and heterojunction induced the enhanced activity for molecular oxygen activation. The photogenerated holes, superoxide, and singlet oxygen generated by the carrier and exciton photocatalysis supported the high photocatalytic NO removal efficiency. This study provides new ideas for designing efficient Bi-O-X(X = Cl, Br, I) photocatalysts for oxidation reactions.
文摘Water oxidation is one of the most important reactions in natural and artificial energy conversion schemes.In nature,solar energy is converted to chemical energy via water oxidation at the oxygen-evolving center of photosystem II to generate dioxygen,protons,and electrons.In artificial energy schemes,water oxidation is one of the half reactions of water splitting,which is an appealing strategy for energy conversion via photocatalytic,electrocatalytic,or photoelectrocatalytic processes.Because it is thermodynamically unfavorable and kinetically slow,water oxidation is the bottleneck for achieving large-scale water splitting.Thus,developing highly efficient water oxidation catalysts has attracted the interests of researchers in the past decades.The formation of O-O bonds is typically the rate-determining step of the water oxidation catalytic cycle.Therefore,better understanding this key step is critical for the rational design of more efficient catalysts.This review focuses on elucidating the evolution of metal-oxygen species during transition metal-catalyzed water oxidation,and more importantly,on discussing the feasible O-O bond formation mechanisms during the oxygen evolution reaction over synthetic molecular catalysts.
基金supported by National Basic Research Program of China (2013CB933200)Commission of Science and Technology of Shanghai Municipality (15DZ1205305)~~
文摘Ag‐Cu‐Cl/BaCO3 catalysts with different Cl and Cu loadings, prepared by the reduction deposition impregnation method, were investigated for gas‐phase epoxidation of propylene by molecular oxygen and characterized by X‐ray diffraction, X‐ray photoelectron spectroscopy and O2 temperatureprogrammed desorption. Ag‐Cu‐Cl/BaCO3 catalyst with 0.036 wt% Cu and 0.060 wt% Cl exhibitedthe highest catalytic performance for gas‐phase epoxidation of propylene by molecular oxygen. Apropylene oxide selectivity of 83.7% and propylene conversion of 1.2% were achieved under thereaction conditions of 20% C3H6‐10% O2‐70% N2, 200 °C, 0.1 MPa and 3000 h?1. Increasing the Clloading allowed Ag to ensemble easier, whereas changing the Cu loading showed little effect on Agcrystallite size. The appropriate Cl loading of Ag‐Cu‐Cl/BaCO3 catalyst can reduce the dissociationadsorption of oxygen to atomic oxygen species leading to the combustion of propylene to CO2, whichbenefits epoxidation of propylene by molecular oxygen. Excessive Cl loading of Ag‐Cu‐Cl/BaCO3catalyst decreases propylene conversion and propylene oxide selectivity remarkably because of Clpoisoning. The appropriate Cu loading of Ag‐Cu‐Cl/BaCO3 catalyst is efficient for the epoxidation ofpropylene by molecular oxygen, and an excess Cu loading decreases propylene oxide selectivitybecause the aggregation of Cu species increases the exposed surfaces of Ag nanoparticles, whichwas shown by slight increases in atomic oxygen species adsorbed. The appropriate loadings of Cu and Cl of Ag‐Cu‐Cl/BaCO3 catalyst are important to strike the balance between molecular oxygen and atomic oxygen species to create a favorable epoxidation of propylene by molecular oxygen.
文摘In this work,the tunable introduction of oxygen vacancies in bismuth tungstate was realized via asimple solvothermal method with the assistance of iodine doping.With the predictions afforded bytheoretical calculations,the as-prepared bismuth tungstate was characterized using various tech-niques,such as X-ray diffraction,Raman spectroscopy,scanning electron microscopy,transmissionelectron microscopy,X-ray photoelectron spectroscopy,electron spin resonance spectroscopy,anduV-Vis diffuse reflectance spectroscopy.The different concentrations of the oxygen vacancies onbismuth tungstate were found to be intensely correlated with iodine doping,which weakened thelattice oxygen bonds.Owing to the sufficient oxygen vacancies introduced in bismuth tungstate as aresult of iodine doping,the molecular oxygen activation was remarkably enhanced,thus endowingbismuth tungstate with high activity for the photocatalytic degradation of sodium pentachloro-phenate.More encouraging is the total organic carbon removal rate of sodium pentachlorophenateover iodine-doped bismuth tungstate that exceeded 90%in only 2 h and was 10.6 times higher thanthat of the pristine bismuth tungstate under visible light irradiation.Moreover,the mechanism,through which the degradation of sodium pentachlorophenate over iodine-doped bismuth tung-state is enhanced,was speculated based on the results of radical detection and capture experiments.This work provides a new perspective for the enhanced photocatalytic degradation of organochlo-rine pesticides from the oxygen vacancy-induced molecular oxygen activation over iodine-dopedbismuth tungstate.
基金The authors would like to thank the National Natural Science Foundation of China(Grants U1837204 and 11802053)for the financial support of this research.
文摘Conventional fiber reinforced plastics(FRPs)have compatibility issues with solid oxygen while used as a fuel tank,which might cause combustion and explosion.To study the compatibility of different epoxy resins with liquid oxygen,molecular dynamics was used to simulate the phase changes of cross-linked epoxy resins under the impact of solid oxygen.Three curing resin systems,which are bisphenol A epoxy resin(DGEBA),bisphenol F epoxy resin(DGEBF),and tetrahydrophthalate diglycidyl ester(epoxy resin 711),are modeled to investigate the rational material system for the application of fuel tanks in launching vehicles.The simulation results show that the order of solid oxygen compatibility of these epoxy resins is DGEBA>DGEBF>epoxy resin 711 at the same density of crosslinking.The selection of curing agent also has an impact on the compatibility,with the same epoxy,diaminodiphenyl methane(DDM)has more advanced performance comparing to diaminodiphenyl sulfone(DDS).
文摘The oxidation of styrene with molecular oxygen catalyzed by PdCl2+CuCl2 has been investigated in supercritical CO2 with a batch reactor. The oxidative system of styrene contains four components at the beginning and seven components during the reaction. The critical temperature, critical pressure, and critical density at different conversions are determined by using a high-pressure view cell. The effect of phase behavior on the conversion and selectivity were studied. Experimental results showed that the critical parameters of the reaction mixture at fixed initial molar ratio changed with the conversion of reactant. The conversion of styrene reached maximum near the critical density of the reaction mixture. Product selectivity also varied with density of reaction mixture and could be tuned to some degree.
文摘In an alkaline 2-propanol solution with 5,10,15,20-tetra(4-methoxyl phenyl) porphyrin iron chloride(TOMPPFeCl) as a catalyst and oxygen as a cheap green oxidant, 2-naphthol was conversed to 2-hydroxy-\{1,4-naphthoquinone(HNQ)\} with a yield of 62.17% and a selectivity of 100%, and the conversion number of TMOPPFeCl catalyst was 8.32/min. The catalytic oxidation products were characterized by means of UV-Vis, IR, GC-MS, ~ 1H NMR and melting point determination. In this catalytic oxidation, the catalytic activity of TMOPPFeCl was researched in detail and the reacting conditions were optimized. A possible reaction mechanism is summarized based on in situ EPR determination.
基金the support from the National Natural Science Foundation of China(21773146,22171176 and 22102092)the Fok Ying-Tong Education Foundation for Outstanding Young Teachers in University+2 种基金the Research Funds of Shaanxi Normal Universitythe Fundamental Research Funds for the Central Universitiesthe NRF of Korea(NRF-2021R1A3B1076539 and NRF-2020R1I1A1A01074630)。
文摘Electrocatalytic oxygen reduction and evolution reactions are involved in new energy conversion and storage technologies,such as various fuel cells and metal-air batteries and also water splitting devices[1,2].However,both reactions are very slow in kinetics,and thus catalysts are required[3,4].
基金the supports from the Chinese Academy of Sciences(CAS)Institute of Chemistry,CAS+3 种基金the supports from the National Natural Science Foundation of China(No.21933011)the Beijing Municipal Science&Technology Commission(No.Z191100007219009)the K.C.Wong Education Foundationthe support from the National Natural Science Foundation of China(No.21773073)。
文摘The reaction of triplet fusion,also named triplet-triplet annihilation,has attracted a lot of research interests because of its wide applications in photocatalytic,solar cells,and bioimaging.As for the singlet oxygen photosensitization,the reactive singlet oxygen species are generated through the energy transfers from photosensitizer(PS)to ground triplet oxygen molecule.In this work,we computed the electronic coupling for singlet oxygen photosensitization using the nonadiabatic coupling from the quantum chemical calculation.Then we utilized the molecular orbital(MO)overlaps to approximate it,where the MOs were computed from isolated single molecules.As demonstrated with quantitative results,this approach well describes the distribution of the coupling strength as the function of the intermolecular distance between the sensitizer and O_(2),providing us a simple but effective way to predict the coupling of triplet fusion reactions.
基金National Research Foundation of Korea(NRF),Grant/Award Number:2021R1A2C2012685Korea Institute of Energy Technology Evaluation and Planning(KETEP),Grant/Award Number:20203020030010Ministry of Trade,Industry&Energy(MOTIE,Korea),Grant/Award Number:20020400。
文摘One of the primary challenges in relation to phosphoric acid fuel cells is catalyst poisoning by phosphate anions that occurs at the interface between metal nanoparticles and the electrolyte.The strong adsorption of phosphate anions on the catalyst surface limits the active sites for the oxygen reduction reaction(ORR),significantly deteriorating fuel cell performance.Here,antipoisoning catalysts consisting of Pt-based nanoparticles encapsulated in an ultrathin carbon shell that can be used as a molecular sieve layer are rationally designed.The pore structure of the carbon shells is systematically regulated at the atomic level by high-temperature gas treatment,allowing O_(2) molecules to selectively react on the active sites of the metal nanoparticles through the molecular sieves.Besides,the carbon shell,as a protective layer,effectively prevents metal dissolution from the catalyst during a long-term operation.Consequently,the defect-controlled carbon shell leads to outstanding ORR activity and durability of the hybrid catalyst even in phosphoric acid electrolytes.