Aqueous sodium-ion batteries are known for poor rechargeability because of the competitive water decomposition reactions and the high electrode solubility.Improvements have been reported by saltconcentrated and organi...Aqueous sodium-ion batteries are known for poor rechargeability because of the competitive water decomposition reactions and the high electrode solubility.Improvements have been reported by saltconcentrated and organic-hybridized electrolyte designs,however,at the expense of cost and safety.Here,we report the prolonged cycling of ASIBs in routine dilute electrolytes by employing artificial electrode coatings consisting of NaX zeolite and NaOH-neutralized perfluorinated sulfonic polymer.The as-formed composite interphase exhibits a molecularsieving effect jointly played by zeolite channels and size-shrunken ionic domains in the polymer matrix,which enables high rejection of hydrated Na^(+)ions while allowing fast dehydrated Na^(+)permeance.Applying this coating to electrode surfaces expands the electrochemical window of a practically feasible 2 mol kg^(-1) sodium trifluoromethanesulfonate aqueous electrolyte to 2.70 V and affords Na_(2)MnFe(CN)_(6)//NaTi_(2)(PO_(4))_(3) full cells with an unprecedented cycling stability of 94.9%capacity retention after 200 cycles at 1 C.Combined with emerging electrolyte modifications,this molecular-sieving interphase brings amplified benefits in long-term operation of ASIBs.展开更多
One of the primary challenges in relation to phosphoric acid fuel cells is catalyst poisoning by phosphate anions that occurs at the interface between metal nanoparticles and the electrolyte.The strong adsorption of p...One of the primary challenges in relation to phosphoric acid fuel cells is catalyst poisoning by phosphate anions that occurs at the interface between metal nanoparticles and the electrolyte.The strong adsorption of phosphate anions on the catalyst surface limits the active sites for the oxygen reduction reaction(ORR),significantly deteriorating fuel cell performance.Here,antipoisoning catalysts consisting of Pt-based nanoparticles encapsulated in an ultrathin carbon shell that can be used as a molecular sieve layer are rationally designed.The pore structure of the carbon shells is systematically regulated at the atomic level by high-temperature gas treatment,allowing O_(2) molecules to selectively react on the active sites of the metal nanoparticles through the molecular sieves.Besides,the carbon shell,as a protective layer,effectively prevents metal dissolution from the catalyst during a long-term operation.Consequently,the defect-controlled carbon shell leads to outstanding ORR activity and durability of the hybrid catalyst even in phosphoric acid electrolytes.展开更多
The synthesis of nanoporous materials that display a combination of molecular sieving(MS)and quantum sieving(QS)effects is still a challenging task.In this work,we have demonstrated the synthesis of a nanocaged metal...The synthesis of nanoporous materials that display a combination of molecular sieving(MS)and quantum sieving(QS)effects is still a challenging task.In this work,we have demonstrated the synthesis of a nanocaged metal–organic framework(MOF),ECUT-8,that has a dual-sieving capability.ECUT-8 afforded H_(2)/D_(2) isotope separation due to its extremely narrow window size(3.0Å),resulting in QS.Further,the framework flexibility of ECUT-8 was exploited for the separation of butane and hexane isomers due to its MS effect.Other desirable features of ECUT-8 include high thermal,water,and chemical stability,making it suitable for practical application.Herein,these results open up an avenue to design the effects of coexistence of multiple sieving in one material.展开更多
基金supported by the National Key R&D Program of China(Grant No.2022YFB2402604)the National Natural Science Foundation of China(21975271,22209194)+3 种基金Shandong Natural Science Foundation(ZR2020ZD07,ZR2023YQ010 and ZR2021QB106)the Taishan Scholars of Shandong Province(No.ts201511063,tsqn202211277)the Shandong Energy Institute(SEI I202127)Qingdao New Energy Shandong Laboratory(QIBEBT/SEI/QNESLS202304).
文摘Aqueous sodium-ion batteries are known for poor rechargeability because of the competitive water decomposition reactions and the high electrode solubility.Improvements have been reported by saltconcentrated and organic-hybridized electrolyte designs,however,at the expense of cost and safety.Here,we report the prolonged cycling of ASIBs in routine dilute electrolytes by employing artificial electrode coatings consisting of NaX zeolite and NaOH-neutralized perfluorinated sulfonic polymer.The as-formed composite interphase exhibits a molecularsieving effect jointly played by zeolite channels and size-shrunken ionic domains in the polymer matrix,which enables high rejection of hydrated Na^(+)ions while allowing fast dehydrated Na^(+)permeance.Applying this coating to electrode surfaces expands the electrochemical window of a practically feasible 2 mol kg^(-1) sodium trifluoromethanesulfonate aqueous electrolyte to 2.70 V and affords Na_(2)MnFe(CN)_(6)//NaTi_(2)(PO_(4))_(3) full cells with an unprecedented cycling stability of 94.9%capacity retention after 200 cycles at 1 C.Combined with emerging electrolyte modifications,this molecular-sieving interphase brings amplified benefits in long-term operation of ASIBs.
基金National Research Foundation of Korea(NRF),Grant/Award Number:2021R1A2C2012685Korea Institute of Energy Technology Evaluation and Planning(KETEP),Grant/Award Number:20203020030010Ministry of Trade,Industry&Energy(MOTIE,Korea),Grant/Award Number:20020400。
文摘One of the primary challenges in relation to phosphoric acid fuel cells is catalyst poisoning by phosphate anions that occurs at the interface between metal nanoparticles and the electrolyte.The strong adsorption of phosphate anions on the catalyst surface limits the active sites for the oxygen reduction reaction(ORR),significantly deteriorating fuel cell performance.Here,antipoisoning catalysts consisting of Pt-based nanoparticles encapsulated in an ultrathin carbon shell that can be used as a molecular sieve layer are rationally designed.The pore structure of the carbon shells is systematically regulated at the atomic level by high-temperature gas treatment,allowing O_(2) molecules to selectively react on the active sites of the metal nanoparticles through the molecular sieves.Besides,the carbon shell,as a protective layer,effectively prevents metal dissolution from the catalyst during a long-term operation.Consequently,the defect-controlled carbon shell leads to outstanding ORR activity and durability of the hybrid catalyst even in phosphoric acid electrolytes.
基金supported financially by the National Natural Science Foundations of China(nos.21966002,21871047,and 21861017)the Natural Science Foundation of Jiangxi Province of China(no.20181ACB20003)the Training Program for Academic and Technical Leaders of Major Disciplines in Jiangxi Province(no.20194BCJ22010).
文摘The synthesis of nanoporous materials that display a combination of molecular sieving(MS)and quantum sieving(QS)effects is still a challenging task.In this work,we have demonstrated the synthesis of a nanocaged metal–organic framework(MOF),ECUT-8,that has a dual-sieving capability.ECUT-8 afforded H_(2)/D_(2) isotope separation due to its extremely narrow window size(3.0Å),resulting in QS.Further,the framework flexibility of ECUT-8 was exploited for the separation of butane and hexane isomers due to its MS effect.Other desirable features of ECUT-8 include high thermal,water,and chemical stability,making it suitable for practical application.Herein,these results open up an avenue to design the effects of coexistence of multiple sieving in one material.