采用椰壳活性炭、5A和13X分子筛作为吸附剂,动态配气CO2/CH4混合气体作为模拟沼气,研究不用吸附剂及不用原料气配比条件下的CO2/CH4混合气的吸附分离性能,对吸附饱和的13X分子筛分别进行真空(4.5 k Pa)脱附再生和热力(300℃)脱附再生。...采用椰壳活性炭、5A和13X分子筛作为吸附剂,动态配气CO2/CH4混合气体作为模拟沼气,研究不用吸附剂及不用原料气配比条件下的CO2/CH4混合气的吸附分离性能,对吸附饱和的13X分子筛分别进行真空(4.5 k Pa)脱附再生和热力(300℃)脱附再生。研究结果表明:在常温常压下,13X分子筛对混合气中CO2的穿透吸附容量为3.21 mmol/g,对CO2/CH4混合气体的分离系数可达10,明显高于5A分子筛和椰壳活性炭的分离系数;减小混合气中CO2的分压,其穿透时间也随着减小,且吸附容量的减小幅度大于分压的减小幅度;真空脱附再生后的13X分子筛吸附分离性能只能恢复到原来的40%左右,而热力脱附再生后分离性能效果较好。展开更多
介绍了13X沸石分子筛负载钾基CO_2吸收剂的制备方法,通过扫描电镜分析其微观结构,采用热重分析方法研究其再生反应特性。考察了不同反应终温和升温速率对再生反应特性的影响规律,并采用热分析动力学方法求取了再生反应特性参数。结果表...介绍了13X沸石分子筛负载钾基CO_2吸收剂的制备方法,通过扫描电镜分析其微观结构,采用热重分析方法研究其再生反应特性。考察了不同反应终温和升温速率对再生反应特性的影响规律,并采用热分析动力学方法求取了再生反应特性参数。结果表明,KHCO_3负载于沸石分子筛上之后,改善了吸收剂的表观结构,有利于反应进行;分解终温增大能提高反应速率,但高于200℃之后,效果不明显;升温速率低于15℃/min时对再生反应影响显著,但超过15℃/min后影响减弱;吸收剂再生反应表观活化能为41.09-45.60 k J/mol,当升温速率为10℃/min时,所需活化能最小,为41.09 k J/mol,反应最易进行。展开更多
文摘采用椰壳活性炭、5A和13X分子筛作为吸附剂,动态配气CO2/CH4混合气体作为模拟沼气,研究不用吸附剂及不用原料气配比条件下的CO2/CH4混合气的吸附分离性能,对吸附饱和的13X分子筛分别进行真空(4.5 k Pa)脱附再生和热力(300℃)脱附再生。研究结果表明:在常温常压下,13X分子筛对混合气中CO2的穿透吸附容量为3.21 mmol/g,对CO2/CH4混合气体的分离系数可达10,明显高于5A分子筛和椰壳活性炭的分离系数;减小混合气中CO2的分压,其穿透时间也随着减小,且吸附容量的减小幅度大于分压的减小幅度;真空脱附再生后的13X分子筛吸附分离性能只能恢复到原来的40%左右,而热力脱附再生后分离性能效果较好。
文摘介绍了13X沸石分子筛负载钾基CO_2吸收剂的制备方法,通过扫描电镜分析其微观结构,采用热重分析方法研究其再生反应特性。考察了不同反应终温和升温速率对再生反应特性的影响规律,并采用热分析动力学方法求取了再生反应特性参数。结果表明,KHCO_3负载于沸石分子筛上之后,改善了吸收剂的表观结构,有利于反应进行;分解终温增大能提高反应速率,但高于200℃之后,效果不明显;升温速率低于15℃/min时对再生反应影响显著,但超过15℃/min后影响减弱;吸收剂再生反应表观活化能为41.09-45.60 k J/mol,当升温速率为10℃/min时,所需活化能最小,为41.09 k J/mol,反应最易进行。