An ultra-sensitive and highly selective parathion methyl (PM) detection method by surface plasmon resonance (SPR) combined with molecularly imprinted films (MIF) was developed. The PM-imprinted film was prepared...An ultra-sensitive and highly selective parathion methyl (PM) detection method by surface plasmon resonance (SPR) combined with molecularly imprinted films (MIF) was developed. The PM-imprinted film was prepared by thermo initiated polymerization on the bare Au surface of an SPR sensor chip, Template PM molecules were quickly removed by an organic solution of acetonitrilelacetic acid (9:1, v/v), causing a shift of 0.5° in SPR angle. In the concentrations range of 10^-13-10^-10 mol/L, the refractive index showed a gradual increase with higher concentrations of template PM and the changes of SPR angles were linear with the negative logarithm of PM concentrations. In the experiment, the minimum detectable concentration was 10^-13 mol/L. The selectivity of the thin PM-imprinted film against diuron, tetrachlorvinphose and fenitrothion was examined, but no observable binding was detected. The results in the experiment suggested that the MIF had the advantages of high sensitivity and selectivity.展开更多
A novel surface plasmon resonance (SPR) sensor based on molecularly imprinted films (MIFs) was developed for the detection of pentaerythritol tetranitrate (PETN). In this work, the thin MIFs were formed on a gol...A novel surface plasmon resonance (SPR) sensor based on molecularly imprinted films (MIFs) was developed for the detection of pentaerythritol tetranitrate (PETN). In this work, the thin MIFs were formed on a gold sensor chip through thermal co-polymerization of functional mono- mers (methacrylic acid, MAA) and crosslinking monomers (ethylene glycol dimethacrylate, EGD- MA) in the presence of template molecules PETN. The template molecules PETN were subsequently removed from the MIFs simply by rinsing the MIFs with a mixture of acetonitrile and acetic acid 9:1 ( v/v), thus the recognition sites were formed for specific detection of PETN. According to the mass coverage equation, the surface coverage of removed PETN from MIFs was about 10. 8 ng/mm~. The developed SPR sensor allowed for the detection of PETN at concentration down to 10-~~ mol/L. A control experiment utilizing an analogue cyclotrimethylenetrinitramine (RDX) showed MIFs' good selectivity to PETN.展开更多
基金supported by the National Natural Science Foundation of China (No.20771015)the National ‘‘111’’ Project of China’s Higher Education (No.B07012)
文摘An ultra-sensitive and highly selective parathion methyl (PM) detection method by surface plasmon resonance (SPR) combined with molecularly imprinted films (MIF) was developed. The PM-imprinted film was prepared by thermo initiated polymerization on the bare Au surface of an SPR sensor chip, Template PM molecules were quickly removed by an organic solution of acetonitrilelacetic acid (9:1, v/v), causing a shift of 0.5° in SPR angle. In the concentrations range of 10^-13-10^-10 mol/L, the refractive index showed a gradual increase with higher concentrations of template PM and the changes of SPR angles were linear with the negative logarithm of PM concentrations. In the experiment, the minimum detectable concentration was 10^-13 mol/L. The selectivity of the thin PM-imprinted film against diuron, tetrachlorvinphose and fenitrothion was examined, but no observable binding was detected. The results in the experiment suggested that the MIF had the advantages of high sensitivity and selectivity.
基金Supported by the National Natural Science Foundation of Chi- na (20771015) the lll Project of Higher Education of China (B07012)
文摘A novel surface plasmon resonance (SPR) sensor based on molecularly imprinted films (MIFs) was developed for the detection of pentaerythritol tetranitrate (PETN). In this work, the thin MIFs were formed on a gold sensor chip through thermal co-polymerization of functional mono- mers (methacrylic acid, MAA) and crosslinking monomers (ethylene glycol dimethacrylate, EGD- MA) in the presence of template molecules PETN. The template molecules PETN were subsequently removed from the MIFs simply by rinsing the MIFs with a mixture of acetonitrile and acetic acid 9:1 ( v/v), thus the recognition sites were formed for specific detection of PETN. According to the mass coverage equation, the surface coverage of removed PETN from MIFs was about 10. 8 ng/mm~. The developed SPR sensor allowed for the detection of PETN at concentration down to 10-~~ mol/L. A control experiment utilizing an analogue cyclotrimethylenetrinitramine (RDX) showed MIFs' good selectivity to PETN.