A nonlinear dynamic simulation model based on coordinated control of speed and flow rate for the molten salt reactor and combined cycle systems is proposed here to ensure the coordination and stability between the mol...A nonlinear dynamic simulation model based on coordinated control of speed and flow rate for the molten salt reactor and combined cycle systems is proposed here to ensure the coordination and stability between the molten salt reactor and power system.This model considers the impact of thermal properties of fluid variation on accuracy and has been validated with Simulink.This study reveals the capability of the control system to compensate for anomalous situations and maintain shaft stability in the event of perturbations occurring in high-temperature molten salt tank outlet parameters.Meanwhile,the control system’s impact on the system’s dynamic characteristics under molten salt disturbance is also analyzed.The results reveal that after the disturbance occurs,the controlled system benefits from the action of the control,and the overshoot and disturbance amplitude are positively correlated,while the system power and frequency eventually return to the initial values.This simulation model provides a basis for utilizing molten salt reactors for power generation and maintaining grid stability.展开更多
We described a method for obtaining fluorine-free Ti_(3)C_(2)Cl_(2)MXene phases by melting copper in CuCl_(2)instead of aluminum in Ti_(3)AlC_(2).XRD results show that when molten salt CuCl_(2)etches Ti_(3)AlC_(2),it ...We described a method for obtaining fluorine-free Ti_(3)C_(2)Cl_(2)MXene phases by melting copper in CuCl_(2)instead of aluminum in Ti_(3)AlC_(2).XRD results show that when molten salt CuCl_(2)etches Ti_(3)AlC_(2),it forms an intermediate product Ti_(3)CuC_(2),and then reacts with Ti_(3)CuC_(2)to obtain Ti_(3)C_(2)Cl_(2).The reaction of Ti_(3)AlC_(2)and CuCl_(2)at a temperature of 800℃for 2 h to obtain Ti_(3)C_(2)Cl_(2)with an optimal lamellar structure is shown in SEM results.The pseudopotential plane-wave(PP-PW)method is used to calculate on the electronic structure.The etching mechanism is investigated by the total energies of each substance.The chemical reaction of Ti_(3)AlC_(2)and CuCl_(2)will first become Ti_(3)CuC_(2)and Cu,and then become Ti_(3)C_(2)Cl_(2)during the Lewis acid etching process,which are consistent with the experimental results.展开更多
The synthesis of carbide coatings on graphite substrates using molten salt synthesis(MSS),has garnered significant interest due to its cost-effective nature.This study investigates the reaction process and growth kine...The synthesis of carbide coatings on graphite substrates using molten salt synthesis(MSS),has garnered significant interest due to its cost-effective nature.This study investigates the reaction process and growth kinetics involved in MSS,shedding light on key aspects of the process.The involvement of Ti powder through liquid-phase mass transfer is revealed,where the diffusion distance and quantity of Ti powder play a crucial role in determining the reaction rate by influencing the C content gradient on both sides of the carbide.Furthermore,the growth kinetics of the carbide coating are predominantly governed by the diffusion behavior of C within the carbide layer,rather than the chemical reaction rate.To analyze the kinetics,the thickness of the carbide layer is measured with respect to heat treatment time and temperature,unveiling a parabolic relationship within the temperature range of 700-1300℃.The estimated activation energy for the reaction is determined to be 179283 J·mol^(-1).These findings offer valuable insights into the synthesis of carbide coatings via MSS,facilitating their optimization and enhancing our understanding of their growth mechanisms and properties for various applications.展开更多
To reduce the production cost of titanium,a new method for direct preparation of low-oxygen titanium powder by the magnesiothermic reduction of TiO_(2) with the assistance of a MgCl_(2)−HoCl_(3) molten salt was propos...To reduce the production cost of titanium,a new method for direct preparation of low-oxygen titanium powder by the magnesiothermic reduction of TiO_(2) with the assistance of a MgCl_(2)−HoCl_(3) molten salt was proposed.Thermodynamic calculations showed that the magnesiothermic reduction of TiO_(2) was feasible.However,hindrance of the reduction reaction by the reduction by-product of MgO resulted in a considerably high O concentration in the titanium powder.The addition of HoCl_(3) to the system significantly reduces the activity of MgO to produce low-oxygen titanium powder.Thermochemical deoxidation and reduction experiments were conducted with MgCl_(2)−HoCl_(3) molten salt in the temperature range of 1023−1273 K.The results showed that titanium powder with oxygen concentration(mass fraction)below 5.00×10^(-4) can be prepared at the Mg−MgCl_(2)−HoOCl−HoCl_(3) equilibrium.展开更多
The heavy water-moderated molten salt reactor(HWMSR)is a newly proposed reactor concept,in which heavy water is adopted as the moderator and molten salt dissolved with fissile and fertile elements is used as the fuel....The heavy water-moderated molten salt reactor(HWMSR)is a newly proposed reactor concept,in which heavy water is adopted as the moderator and molten salt dissolved with fissile and fertile elements is used as the fuel.Issues arising from graphite in traditional molten salt reactors,including the positive temperature coefficient and management of highly radio-active spent graphite waste,can be addressed using the HWMSR.Until now,research on the HWMSR has been centered on the core design and nuclear fuel cycle to explore the viability of the HWMSR and its advantages in fuel utilization.However,the core safety of the HWMSR has not been extensively studied.Therefore,we evaluate typical accidents in a small modular HWMSR,including fuel salt inlet temperature overcooling and overheating accidents,fuel salt inlet flow rate decrease,heavy water inlet temperature overcooling accidents,and heavy water inlet mass flow rate decrease accidents,based on a neutronics and thermal-hydraulics coupled code.The results demonstrated that the core maintained safety during the investigated accidents.展开更多
This study demonstrates the design and application of a novel high temperature rotatory apparatus for insitu synchrotron X-ray diffraction studies of molten salts,facilitating investigation into the interaction betwee...This study demonstrates the design and application of a novel high temperature rotatory apparatus for insitu synchrotron X-ray diffraction studies of molten salts,facilitating investigation into the interaction between various structural materials and molten salts.The apparatus enables accurate detection of every phase change during hightemperature experiments,including strong reaction processes like corrosion.Molten salts,such as chlorides or fluo⁃rides,together with the structure materials,are inserted into either quartz or boron nitride capillaries,where X-ray diffraction pattern can be continuously collected,as the samples are heated to high temperature.The replacement re⁃action,when molten ZnCl2 are etching Ti3AlC2,can be clearly observed through changes in diffraction peak intensity as well as expansion in c-axis lattice parameter of the hexagonal matrix,due to the larger atomic number and ionic ra⁃dius of Zn2+.Furthermore,we investigated the high-temperature corrosion process when GH3535 alloy is in FLiNaK molten salt,and can help to optimize its stability for potential applications in molten salt reactor.Additionally,this high temperature apparatus is fully compatible with the combined usage of X-ray diffraction and Raman technique,providing both bulk and surface structural information.This high temperature apparatus has been open to users and is extensively used at BL14B1 beamline of the Shanghai Synchrotron Radiation Facility.展开更多
Weak redox ability and severe charge recombination pose significant obstacles to the advancement of CO_(2) photoreduction.To tackle this challenge and enhance the CO_(2) photoconversion efficiency,fabricating well-mat...Weak redox ability and severe charge recombination pose significant obstacles to the advancement of CO_(2) photoreduction.To tackle this challenge and enhance the CO_(2) photoconversion efficiency,fabricating well-matched S-scheme heterostructure and establishing a robust built-in electric field emerge as pivotal strategies.In pursuit of this goal,a core-shell structured CuInS_(2)@CoS_(2)S-scheme heterojunction was meticulously engineered through a two-step molten salt method.This approach over the CuInS_(2)-based composites produced an internal electric field owing to the disparity be-tween the Fermi levels of CoS_(2) and CuInS_(2) at their interface.Consequently,the electric field facili-tated the directed migration of charges and the proficient separation of photoinduced carriers.The resulting CuInS_(2)@CoS_(2) heterostructure exhibited remarkable CO_(2) photoreduction performance,which was 21.7 and 26.5 times that of pure CuInS_(2) and CoS_(2),respectively.The S-scheme heterojunc-tion photogenerated charge transfer mechanism was validated through a series of rigorous anal-yses,including in situ irradiation X-ray photoelectron spectroscopy,work function calculations,and differential charge density examinations.Furthermore,in situ infrared spectroscopy and density functional theory calculations corroborated the fact that the CuInS_(2)@CoS_(2) heterojunction substan-tially lowered the formation energy of *COOH and *CO.This study demonstrates the application potential of S-scheme heterojunctions fabricated via the molten salt method in the realm of ad-dressing carbon-related environmental issues.展开更多
The reduction mechanism of Ir in the NaCl-KCl-IrCl3 molten salt was investigated by cyclic voltammetry and chronopotentiometry, and Ir film was deposited effectively on platinum in potentiostatic mode. The morphology ...The reduction mechanism of Ir in the NaCl-KCl-IrCl3 molten salt was investigated by cyclic voltammetry and chronopotentiometry, and Ir film was deposited effectively on platinum in potentiostatic mode. The morphology and constitution of Ir film were examined by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). It is found that the reduction mechanism of Ir(III) is a three-electron step and electro reaction is a reversible diffusion controlled process; the diffusion coefficients of Ir(III) at 1083, 1113, 1143 and 1183 K are 1.56×10-4, 2.23×10-4, 2.77×10-4 and 4.40×10-4 cm2/s, respectively, while the activation energy of the electrode reaction is 102.95 kJ/mol. The compacted Ir film reveals that the applied potential greatly affects the deposition of Ir, the thickness of Ir film deposited at the potential of reduction peak is the highest, the temperature of the molten salt also exerts an influence on deposition, the film formed at a lower temperature is thinner, but more micropores would occur on film when the temperature went too high.展开更多
Due to their limitations in conductivity and shape stability,molten salt phase change materials have encountered obstacles to effectively integrating into electric heating conversion technologies,which are crucial in ...Due to their limitations in conductivity and shape stability,molten salt phase change materials have encountered obstacles to effectively integrating into electric heating conversion technologies,which are crucial in energy storage and conversion fields.In this study,we synthesized an inorganic molten salt composite phase change material(CPCM)with enhanced conductivity and shape stability using a gasphase silica adsorption method.Our findings revealed the regularities in thermal properties modulation by expanded graphite(EG)within CPCM and delved into its characteristics of electric heating conversion.The study elucidated that a conductive network is essentially formed when the EG content exceeds 3 wt%.Following the fabrication of CPCM into electric heating conversion modules,we observed a correlation between the uniformity of module temperature and the quantity of EG,as well as the distribution of electrode resistance and external voltage magnitude.Building upon this observation,we proposed a strategy to adjust the module temperature field with an electric field.Comparing the proposed direct electrical heating energy storage method with traditional indirect electrical heating methods,the energy storage rate increases by 93.8%,with an improved temperature uniformity.This research offers valuable insights for the application of molten salt electric heating conversion CPCMs.展开更多
The electro-deoxidation of TiO2 was investigated in molten CaCl2.Back electromotive force measurements,constant voltage electrolytic experiments,contrast experiments of different cathodes,and cyclic voltammograms were...The electro-deoxidation of TiO2 was investigated in molten CaCl2.Back electromotive force measurements,constant voltage electrolytic experiments,contrast experiments of different cathodes,and cyclic voltammograms were carried out for solving the puzzle of reduction mechanism.The results showed that the reduction process proceeded step by step.TiO2 was first reduced to Ti3O5 or Ti2O3,and then further reduced to Ti3O,Ti2O,TiO and Ti.In addition,direct electrochemical reduction of titanium dioxide was the primary cathodic reaction;meanwhile,some calciothermic reduction reactions also happened at the cathode.Cyclic voltammograms of solid titanium dioxide and molybdenum wire in molten salts with different compositions were also studied.展开更多
Electrochemical studies on silicon deposition were performed in molten salt electrolytes. Purification of metallurgical grade silicon by electrorefining was carried out in molten Si-chloride salts at temperatures from...Electrochemical studies on silicon deposition were performed in molten salt electrolytes. Purification of metallurgical grade silicon by electrorefining was carried out in molten Si-chloride salts at temperatures from 973 K to 1223 K. It was found that the use of a liquid alloy anode of silicon and copper was beneficial in molten CaCl2 with NaCl, CaO and dissolved Si. ICP-AES analysis results showed efficient removal of metal impurities, such as titanium, aluminum and iron, which are present in significant quantities in the feedstock. The contents of boron and phosphorus in the silicon after electrorefining were reduced from 36×10-6 and 25×10-6 to 4.6×10-6 and 2.8 ×10-6, respectively. The energy consumption of electrorefining was estimated to be about 9.3 kW?h/kg.展开更多
Mg-La alloys were prepared by constant voltage electrolysis in the molten salt system of MgC12-LaC13-KC1 at 750℃, with a graphite crucible as the anode and a tungsten rod as the cathode. The effect of oxide and fluor...Mg-La alloys were prepared by constant voltage electrolysis in the molten salt system of MgC12-LaC13-KC1 at 750℃, with a graphite crucible as the anode and a tungsten rod as the cathode. The effect of oxide and fluoride addition on the electrolysis was investigated comprehensively. X-ray diffraction (XRD) was used to characterize some of the Mg-La alloy products and the sludges. As the content of MgO or La203 in the electrolyte increased, both the current efficiency and the mass of alloy product decreased, indicating that both MgO and La203 may take part in the reactions in the electrolyte. When the same mass of the oxide was added, compared with La203, MgO had a more pronounced effect on both the current efficiency and the mass of alloy product. XRD studies confirmed the formation of LaOC1 when MgO or LazO3 was added into the electrolyte. The formation of LaOCl sludge would be the main reason for the negative effect of the oxide addition on both the current efficiency and the mass of alloy. In the electrolytic system, the addition of CaF2 was not helpful to suppress the negative effect of MgO on the electrolysis, probably due to the complex reactions of the La compounds in the electrolyte.展开更多
The hot corrosion behavior of a Ni?20Cr?18W (mass fraction, %) superalloy in the mixture of 75%Na 2 SO 4?25%NaCl melts at 700 and 800 °C was studied. The results demonstrate that the alloy suffers from serious ho...The hot corrosion behavior of a Ni?20Cr?18W (mass fraction, %) superalloy in the mixture of 75%Na 2 SO 4?25%NaCl melts at 700 and 800 °C was studied. The results demonstrate that the alloy suffers from serious hot corrosion attack in the mixture molten salt. Meanwhile, the degradation of the substrate accelerates with increasing the corrosion temperature. The corrosion layer has an obvious duplex microstructure, and the Cr-depletion zone is detected obviously nearby the inner corrosion layer. The main corrosion products at 700 and 800 °C are almost the same and mainly include NiO, Cr2O3and Ni3S2, but a trace amount of NiCrO2 is detected at 800 °C for 20 h. The hot corrosion mechanism and formation mechanism of corrosion scales of the Ni?20Cr?18W superalloy in the molten salt are proposed.展开更多
The electrical conductivity of NaF-AlF3-CaF2-Al2O3-ZrO2 system was studied by a tube-type cell with fixed cell constant. The results show that the electrical conductivity of NaF-AlF3-3%Al2O3-3%CaF2-ZrO2 molten salt sy...The electrical conductivity of NaF-AlF3-CaF2-Al2O3-ZrO2 system was studied by a tube-type cell with fixed cell constant. The results show that the electrical conductivity of NaF-AlF3-3%Al2O3-3%CaF2-ZrO2 molten salt system decreases with increase of ZrO2 content in an interval of 0-5%. The increase of 1%ZrO2 results in a corresponding electrical conductivity decrease of 0.02 S/cm, and the equivalent conductivity increases with the increase of molar ratio of NaF to AlF3. When the temperature increases by 1 °C, the electrical conductivity increases by 0.004 S/cm. At last, the regression equations of electrical conductivity relative to temperature and ZrO2 are obtained by quadratic regression analysis.展开更多
By using cyclic and linear sweep voltammetry,the electrochemical deposition behaviors of Mg^2+ and B^3+ in fluorides molten salts of KF-MgF2 and KF-KBF4 at 880℃ were investigated,respectively.The results show that ...By using cyclic and linear sweep voltammetry,the electrochemical deposition behaviors of Mg^2+ and B^3+ in fluorides molten salts of KF-MgF2 and KF-KBF4 at 880℃ were investigated,respectively.The results show that the electrochemical reduction of Mg^2+ is a one-step reaction as Mg^2++2e-→Mg in KF-1%MgF2 molten salt,and the electrochemical reduction of B^3+ is also a one-step reaction as B^3++3e-→B in KF-KBF4 (1%,2% KBF4) molten salts.Both the cathodic reduction reactions of Mg^2+ and B^3+ are controlled by diffusion process.The diffusion coefficients of Mg^2+ in KF-MgF2 molten salts and B^3+ in KF-KBF4 molten salts are 6.8×10^-7 cm^2/s and 7.85×10^-7 cm^2/s,respectively.Moreover,the electrochemical synthesis of MgB2 by co-deposition of Mg and B was carried out in the KF-MgF2-KBF4 (molar ratio of 6:1:2) molten salt at 750℃.The X-ray diffraction analysis indicates that MgB2 can be deposited on graphite cathode in the KF-MgF2-KBF4 molten salt at 750℃.展开更多
The electrochemical process of Mg-Sr codeposition was studied in MgCl2-SrCl2-KCl melts containing different MgCl2 concentrations at 700 ℃ by cyclic voltammetry, chronopotentiometry and chronoamperometry. The results ...The electrochemical process of Mg-Sr codeposition was studied in MgCl2-SrCl2-KCl melts containing different MgCl2 concentrations at 700 ℃ by cyclic voltammetry, chronopotentiometry and chronoamperometry. The results show that the actual precipitation potential of Sr reduces by nearly 0.5 V because of the depolarization effects of Sr activity reduced by forming Mg-Sr alloy. The codeposition potential condition of Mg and Sr to form Mg-Sr alloy is as follows: When electrode potential is more negative than -1.5 V, the magnesium will precipitate; when electrode potential is more negative than -2.0 V, the magnesium and strontium will both deposit. The control step of codeposition process of Mg and Sr is not diffusion control step. The codeposition current condition of Mg and Sr to form Mg-Sr alloy by chronoptentiometry is as follows: cathode current densities are higher than 0.71, 1.57 and 2.83 A/cm^2 in MgCl2-SrCl2-KCl melts with MgCl2 concentrations of 2%, 5% and 10% (mass fraction), respectively. Key words:展开更多
A molten salt method was developed to prepare porous La1‐xSrxMn0.8Fe0.2O3 (0≤ x ≤ 0.6) micro‐spheres using hierarchical porous δ‐MnO2 microspheres as a template in eutectic NaNO3‐KNO3. X‐ray diffraction patt...A molten salt method was developed to prepare porous La1‐xSrxMn0.8Fe0.2O3 (0≤ x ≤ 0.6) micro‐spheres using hierarchical porous δ‐MnO2 microspheres as a template in eutectic NaNO3‐KNO3. X‐ray diffraction patterns showed that single phase LaMn0.8Fe0.2O3 with good crystallinity was syn‐thesized at 450℃ after 4 h. Transmission electron microscope images exhibited that the LaMn0.8Fe0.2O3 sample obtained at 450?? after 4 h possessed a porous spherical morphology com‐posed of aggregated nanocrystallites. Field emission scanning electron microscope images indicated that the growth of the porous LaMn0.8Fe0.2O3 microspheres has two stages. SEM pictures showed that a higher calcination temperature than 450?? had an adverse effect on the formation of a po‐rous spherical structure. The LaMn0.8Fe0.2O3 sample obtained at 450?? after 4 h displayed a high BET surface area of 55.73 m2/g with a pore size of 9.38 nm. Fourier transform infrared spectra suggested that Sr2+ions entered the A sites and induced a decrease of the binding energy between Mn and O. The CO conversion with the La1‐xSrxMn0.8Fe0.2O3 (0≤x≤0.6) samples indicated that the La0.4Sr0.6Mn0.8Fe0.2O3 sample had the best catalytic activity and stability. Further analysis by X‐ray photoelectron spectroscopy demonstrated that Sr2+doping altered the content of Mn4+ions, oxygen vacancies and adsorbed oxygen species on the surface, which affected the catalytic performance for CO oxidation.展开更多
The interaction between molten Na2CO3-Na Cl salt and Sb and the solubility of Sb in molten salt were investigated in the temperature range of 700-1000 °C.The results show that the dissolution equilibrium of Sb in...The interaction between molten Na2CO3-Na Cl salt and Sb and the solubility of Sb in molten salt were investigated in the temperature range of 700-1000 °C.The results show that the dissolution equilibrium of Sb in molten salt can be achieved in 3 h,and the amount of Sb dissolved in the melt decreases as the viscosity decreases.The solubility limits in an eutectic mixture were determined as 5.42%,2.42%,0.75% and 0.68% at 700,800,900 and 1000 °C,respectively.A high temperature and appropriate content of Na Cl will decrease the dissolution of Sb.The insoluble Sb was collected at the bottom of molten salt.The Sb dissolved on the surface of the molten salt is easily oxidized,whereas the Sb dissolved inside the molten salt is randomly distributed in terms of the form of metal Sb.展开更多
A cost-effective carbon-free nanocoating strategy was developed for the synthesis of ultra-fine SnO2 coatingα-Fe2O3 core-shell nanoparticles. This strategy only involves a two-step molten salt reaction at low tempera...A cost-effective carbon-free nanocoating strategy was developed for the synthesis of ultra-fine SnO2 coatingα-Fe2O3 core-shell nanoparticles. This strategy only involves a two-step molten salt reaction at low temperature of 300 °C. The as-preparedα-Fe2O3@SnO2 core-shell nanocomposites show enhanced electrochemical performances than the bareα-Fe2O3 nanoparticles. This involved metal oxide nanocoating method is easy to be carried out, and the heat treatment temperature is much lower than that of other traditional solid-state annealing method and many carbon or metal oxide nanocoating methods. The molten salt method may also be used to produce other metal oxides coating nanostructures as the electrode materials for lithium-ion batteries.展开更多
The hydrogenation reaction of electrolyzed titanium, as the first step during hydrogenation-dehydrogenation for the preparation of titanium powder, was studied. The titanium hydride was prepared through the reaction b...The hydrogenation reaction of electrolyzed titanium, as the first step during hydrogenation-dehydrogenation for the preparation of titanium powder, was studied. The titanium hydride was prepared through the reaction between electrolyzed titanium and hydrogen at different hydrogenation temperatures and different time. The evolutions of hydrogen and oxygen contents, density, hardness and phase composition before and after hydrogenation were characterized under different hydrogenation conditions. The results show that the main phases of titanium hydride were TiHl.924, TiH1.971 and TiH2. Increasing the hydrogenation temperature could not enhance the hydrogen content but increase the oxygen content. The effect of the hydrogenation time on the hydrogen content was not obvious. The optimal parameters of the hydrogenation process were obtained: beating at 400℃ and holding for 2 h, by which the hydrogen content of 3.63% and oxygen content of 0.18% (mass fraction) can be obtained. In addition, the microstructure, orientations and tissues of electrolyzed titanium and titanium hydride were detected.展开更多
基金This work was supported by the Chinese TMSR Strategic Pioneer Science and Technology Project(No.XDA02010300).
文摘A nonlinear dynamic simulation model based on coordinated control of speed and flow rate for the molten salt reactor and combined cycle systems is proposed here to ensure the coordination and stability between the molten salt reactor and power system.This model considers the impact of thermal properties of fluid variation on accuracy and has been validated with Simulink.This study reveals the capability of the control system to compensate for anomalous situations and maintain shaft stability in the event of perturbations occurring in high-temperature molten salt tank outlet parameters.Meanwhile,the control system’s impact on the system’s dynamic characteristics under molten salt disturbance is also analyzed.The results reveal that after the disturbance occurs,the controlled system benefits from the action of the control,and the overshoot and disturbance amplitude are positively correlated,while the system power and frequency eventually return to the initial values.This simulation model provides a basis for utilizing molten salt reactors for power generation and maintaining grid stability.
基金Funded by the National Natural Science Foundation for Young Scholars of China(No.51302073)the Hubei Provincial Key Laboratory of Green Materials for Light IndustryHubei University of Technology(No.202307B07)。
文摘We described a method for obtaining fluorine-free Ti_(3)C_(2)Cl_(2)MXene phases by melting copper in CuCl_(2)instead of aluminum in Ti_(3)AlC_(2).XRD results show that when molten salt CuCl_(2)etches Ti_(3)AlC_(2),it forms an intermediate product Ti_(3)CuC_(2),and then reacts with Ti_(3)CuC_(2)to obtain Ti_(3)C_(2)Cl_(2).The reaction of Ti_(3)AlC_(2)and CuCl_(2)at a temperature of 800℃for 2 h to obtain Ti_(3)C_(2)Cl_(2)with an optimal lamellar structure is shown in SEM results.The pseudopotential plane-wave(PP-PW)method is used to calculate on the electronic structure.The etching mechanism is investigated by the total energies of each substance.The chemical reaction of Ti_(3)AlC_(2)and CuCl_(2)will first become Ti_(3)CuC_(2)and Cu,and then become Ti_(3)C_(2)Cl_(2)during the Lewis acid etching process,which are consistent with the experimental results.
基金This work was financially supported by the National Natural Science Foundation of China(No.52171144)the Fundamental Research Special Zone Program of Shanghai Jiao Tong University(No.21TQ1400215).
文摘The synthesis of carbide coatings on graphite substrates using molten salt synthesis(MSS),has garnered significant interest due to its cost-effective nature.This study investigates the reaction process and growth kinetics involved in MSS,shedding light on key aspects of the process.The involvement of Ti powder through liquid-phase mass transfer is revealed,where the diffusion distance and quantity of Ti powder play a crucial role in determining the reaction rate by influencing the C content gradient on both sides of the carbide.Furthermore,the growth kinetics of the carbide coating are predominantly governed by the diffusion behavior of C within the carbide layer,rather than the chemical reaction rate.To analyze the kinetics,the thickness of the carbide layer is measured with respect to heat treatment time and temperature,unveiling a parabolic relationship within the temperature range of 700-1300℃.The estimated activation energy for the reaction is determined to be 179283 J·mol^(-1).These findings offer valuable insights into the synthesis of carbide coatings via MSS,facilitating their optimization and enhancing our understanding of their growth mechanisms and properties for various applications.
基金financially supported by the National Natural Science Foundation of China (No.21968013)。
文摘To reduce the production cost of titanium,a new method for direct preparation of low-oxygen titanium powder by the magnesiothermic reduction of TiO_(2) with the assistance of a MgCl_(2)−HoCl_(3) molten salt was proposed.Thermodynamic calculations showed that the magnesiothermic reduction of TiO_(2) was feasible.However,hindrance of the reduction reaction by the reduction by-product of MgO resulted in a considerably high O concentration in the titanium powder.The addition of HoCl_(3) to the system significantly reduces the activity of MgO to produce low-oxygen titanium powder.Thermochemical deoxidation and reduction experiments were conducted with MgCl_(2)−HoCl_(3) molten salt in the temperature range of 1023−1273 K.The results showed that titanium powder with oxygen concentration(mass fraction)below 5.00×10^(-4) can be prepared at the Mg−MgCl_(2)−HoOCl−HoCl_(3) equilibrium.
基金the National Natural Science Foundation of China(No.11905285)the Shanghai Natural Science Foundation(No.20ZR1468700)the Youth Innovation Promotion Association CAS(No.2022258).
文摘The heavy water-moderated molten salt reactor(HWMSR)is a newly proposed reactor concept,in which heavy water is adopted as the moderator and molten salt dissolved with fissile and fertile elements is used as the fuel.Issues arising from graphite in traditional molten salt reactors,including the positive temperature coefficient and management of highly radio-active spent graphite waste,can be addressed using the HWMSR.Until now,research on the HWMSR has been centered on the core design and nuclear fuel cycle to explore the viability of the HWMSR and its advantages in fuel utilization.However,the core safety of the HWMSR has not been extensively studied.Therefore,we evaluate typical accidents in a small modular HWMSR,including fuel salt inlet temperature overcooling and overheating accidents,fuel salt inlet flow rate decrease,heavy water inlet temperature overcooling accidents,and heavy water inlet mass flow rate decrease accidents,based on a neutronics and thermal-hydraulics coupled code.The results demonstrated that the core maintained safety during the investigated accidents.
基金CAS Photon Science Research Center for Carbon DioxideCAS President’s International Fellowship Initiative(2024PVA0097)+1 种基金National Key Research and Development Program of China(2017YFA0403000,2017YFA0402800)National Natural Science Foundation of China(U1932201,U1732121)。
文摘This study demonstrates the design and application of a novel high temperature rotatory apparatus for insitu synchrotron X-ray diffraction studies of molten salts,facilitating investigation into the interaction between various structural materials and molten salts.The apparatus enables accurate detection of every phase change during hightemperature experiments,including strong reaction processes like corrosion.Molten salts,such as chlorides or fluo⁃rides,together with the structure materials,are inserted into either quartz or boron nitride capillaries,where X-ray diffraction pattern can be continuously collected,as the samples are heated to high temperature.The replacement re⁃action,when molten ZnCl2 are etching Ti3AlC2,can be clearly observed through changes in diffraction peak intensity as well as expansion in c-axis lattice parameter of the hexagonal matrix,due to the larger atomic number and ionic ra⁃dius of Zn2+.Furthermore,we investigated the high-temperature corrosion process when GH3535 alloy is in FLiNaK molten salt,and can help to optimize its stability for potential applications in molten salt reactor.Additionally,this high temperature apparatus is fully compatible with the combined usage of X-ray diffraction and Raman technique,providing both bulk and surface structural information.This high temperature apparatus has been open to users and is extensively used at BL14B1 beamline of the Shanghai Synchrotron Radiation Facility.
文摘Weak redox ability and severe charge recombination pose significant obstacles to the advancement of CO_(2) photoreduction.To tackle this challenge and enhance the CO_(2) photoconversion efficiency,fabricating well-matched S-scheme heterostructure and establishing a robust built-in electric field emerge as pivotal strategies.In pursuit of this goal,a core-shell structured CuInS_(2)@CoS_(2)S-scheme heterojunction was meticulously engineered through a two-step molten salt method.This approach over the CuInS_(2)-based composites produced an internal electric field owing to the disparity be-tween the Fermi levels of CoS_(2) and CuInS_(2) at their interface.Consequently,the electric field facili-tated the directed migration of charges and the proficient separation of photoinduced carriers.The resulting CuInS_(2)@CoS_(2) heterostructure exhibited remarkable CO_(2) photoreduction performance,which was 21.7 and 26.5 times that of pure CuInS_(2) and CoS_(2),respectively.The S-scheme heterojunc-tion photogenerated charge transfer mechanism was validated through a series of rigorous anal-yses,including in situ irradiation X-ray photoelectron spectroscopy,work function calculations,and differential charge density examinations.Furthermore,in situ infrared spectroscopy and density functional theory calculations corroborated the fact that the CuInS_(2)@CoS_(2) heterojunction substan-tially lowered the formation energy of *COOH and *CO.This study demonstrates the application potential of S-scheme heterojunctions fabricated via the molten salt method in the realm of ad-dressing carbon-related environmental issues.
文摘The reduction mechanism of Ir in the NaCl-KCl-IrCl3 molten salt was investigated by cyclic voltammetry and chronopotentiometry, and Ir film was deposited effectively on platinum in potentiostatic mode. The morphology and constitution of Ir film were examined by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). It is found that the reduction mechanism of Ir(III) is a three-electron step and electro reaction is a reversible diffusion controlled process; the diffusion coefficients of Ir(III) at 1083, 1113, 1143 and 1183 K are 1.56×10-4, 2.23×10-4, 2.77×10-4 and 4.40×10-4 cm2/s, respectively, while the activation energy of the electrode reaction is 102.95 kJ/mol. The compacted Ir film reveals that the applied potential greatly affects the deposition of Ir, the thickness of Ir film deposited at the potential of reduction peak is the highest, the temperature of the molten salt also exerts an influence on deposition, the film formed at a lower temperature is thinner, but more micropores would occur on film when the temperature went too high.
基金This work is supported by National Key R&D Program of China(No.2022YFB2405204).
文摘Due to their limitations in conductivity and shape stability,molten salt phase change materials have encountered obstacles to effectively integrating into electric heating conversion technologies,which are crucial in energy storage and conversion fields.In this study,we synthesized an inorganic molten salt composite phase change material(CPCM)with enhanced conductivity and shape stability using a gasphase silica adsorption method.Our findings revealed the regularities in thermal properties modulation by expanded graphite(EG)within CPCM and delved into its characteristics of electric heating conversion.The study elucidated that a conductive network is essentially formed when the EG content exceeds 3 wt%.Following the fabrication of CPCM into electric heating conversion modules,we observed a correlation between the uniformity of module temperature and the quantity of EG,as well as the distribution of electrode resistance and external voltage magnitude.Building upon this observation,we proposed a strategy to adjust the module temperature field with an electric field.Comparing the proposed direct electrical heating energy storage method with traditional indirect electrical heating methods,the energy storage rate increases by 93.8%,with an improved temperature uniformity.This research offers valuable insights for the application of molten salt electric heating conversion CPCMs.
基金Project(2006AA068128)supported by the Hi-tech Research and Development Program of China
文摘The electro-deoxidation of TiO2 was investigated in molten CaCl2.Back electromotive force measurements,constant voltage electrolytic experiments,contrast experiments of different cathodes,and cyclic voltammograms were carried out for solving the puzzle of reduction mechanism.The results showed that the reduction process proceeded step by step.TiO2 was first reduced to Ti3O5 or Ti2O3,and then further reduced to Ti3O,Ti2O,TiO and Ti.In addition,direct electrochemical reduction of titanium dioxide was the primary cathodic reaction;meanwhile,some calciothermic reduction reactions also happened at the cathode.Cyclic voltammograms of solid titanium dioxide and molybdenum wire in molten salts with different compositions were also studied.
基金Project (2007J0012) supported by the Natural Science Foundation of Fujian Province, ChinaProject (019811) supported by Foxy in the 6th Framework Program, European Commission
文摘Electrochemical studies on silicon deposition were performed in molten salt electrolytes. Purification of metallurgical grade silicon by electrorefining was carried out in molten Si-chloride salts at temperatures from 973 K to 1223 K. It was found that the use of a liquid alloy anode of silicon and copper was beneficial in molten CaCl2 with NaCl, CaO and dissolved Si. ICP-AES analysis results showed efficient removal of metal impurities, such as titanium, aluminum and iron, which are present in significant quantities in the feedstock. The contents of boron and phosphorus in the silicon after electrorefining were reduced from 36×10-6 and 25×10-6 to 4.6×10-6 and 2.8 ×10-6, respectively. The energy consumption of electrorefining was estimated to be about 9.3 kW?h/kg.
基金Projects(2012BAE01B04)supported by the National Key and Technology R&D Program of ChinaProject(KZCX2-XB3-06)supported by Western Action Program,Chinese Academy of Sciences
文摘Mg-La alloys were prepared by constant voltage electrolysis in the molten salt system of MgC12-LaC13-KC1 at 750℃, with a graphite crucible as the anode and a tungsten rod as the cathode. The effect of oxide and fluoride addition on the electrolysis was investigated comprehensively. X-ray diffraction (XRD) was used to characterize some of the Mg-La alloy products and the sludges. As the content of MgO or La203 in the electrolyte increased, both the current efficiency and the mass of alloy product decreased, indicating that both MgO and La203 may take part in the reactions in the electrolyte. When the same mass of the oxide was added, compared with La203, MgO had a more pronounced effect on both the current efficiency and the mass of alloy product. XRD studies confirmed the formation of LaOC1 when MgO or LazO3 was added into the electrolyte. The formation of LaOCl sludge would be the main reason for the negative effect of the oxide addition on both the current efficiency and the mass of alloy. In the electrolytic system, the addition of CaF2 was not helpful to suppress the negative effect of MgO on the electrolysis, probably due to the complex reactions of the La compounds in the electrolyte.
基金Project(51171150)supported by the National Natural Science Foundation of China
文摘The hot corrosion behavior of a Ni?20Cr?18W (mass fraction, %) superalloy in the mixture of 75%Na 2 SO 4?25%NaCl melts at 700 and 800 °C was studied. The results demonstrate that the alloy suffers from serious hot corrosion attack in the mixture molten salt. Meanwhile, the degradation of the substrate accelerates with increasing the corrosion temperature. The corrosion layer has an obvious duplex microstructure, and the Cr-depletion zone is detected obviously nearby the inner corrosion layer. The main corrosion products at 700 and 800 °C are almost the same and mainly include NiO, Cr2O3and Ni3S2, but a trace amount of NiCrO2 is detected at 800 °C for 20 h. The hot corrosion mechanism and formation mechanism of corrosion scales of the Ni?20Cr?18W superalloy in the molten salt are proposed.
基金Project (2007CB210305) supported by the National Basic Research Program of ChinaProject (51074045) supported by the National Natural Science Foundation of China
文摘The electrical conductivity of NaF-AlF3-CaF2-Al2O3-ZrO2 system was studied by a tube-type cell with fixed cell constant. The results show that the electrical conductivity of NaF-AlF3-3%Al2O3-3%CaF2-ZrO2 molten salt system decreases with increase of ZrO2 content in an interval of 0-5%. The increase of 1%ZrO2 results in a corresponding electrical conductivity decrease of 0.02 S/cm, and the equivalent conductivity increases with the increase of molar ratio of NaF to AlF3. When the temperature increases by 1 °C, the electrical conductivity increases by 0.004 S/cm. At last, the regression equations of electrical conductivity relative to temperature and ZrO2 are obtained by quadratic regression analysis.
基金Project(50804010) supported by the National Natural Science Foundation of ChinaProject(2007CB210305) supported by the National Basic Research Program of China
文摘By using cyclic and linear sweep voltammetry,the electrochemical deposition behaviors of Mg^2+ and B^3+ in fluorides molten salts of KF-MgF2 and KF-KBF4 at 880℃ were investigated,respectively.The results show that the electrochemical reduction of Mg^2+ is a one-step reaction as Mg^2++2e-→Mg in KF-1%MgF2 molten salt,and the electrochemical reduction of B^3+ is also a one-step reaction as B^3++3e-→B in KF-KBF4 (1%,2% KBF4) molten salts.Both the cathodic reduction reactions of Mg^2+ and B^3+ are controlled by diffusion process.The diffusion coefficients of Mg^2+ in KF-MgF2 molten salts and B^3+ in KF-KBF4 molten salts are 6.8×10^-7 cm^2/s and 7.85×10^-7 cm^2/s,respectively.Moreover,the electrochemical synthesis of MgB2 by co-deposition of Mg and B was carried out in the KF-MgF2-KBF4 (molar ratio of 6:1:2) molten salt at 750℃.The X-ray diffraction analysis indicates that MgB2 can be deposited on graphite cathode in the KF-MgF2-KBF4 molten salt at 750℃.
文摘The electrochemical process of Mg-Sr codeposition was studied in MgCl2-SrCl2-KCl melts containing different MgCl2 concentrations at 700 ℃ by cyclic voltammetry, chronopotentiometry and chronoamperometry. The results show that the actual precipitation potential of Sr reduces by nearly 0.5 V because of the depolarization effects of Sr activity reduced by forming Mg-Sr alloy. The codeposition potential condition of Mg and Sr to form Mg-Sr alloy is as follows: When electrode potential is more negative than -1.5 V, the magnesium will precipitate; when electrode potential is more negative than -2.0 V, the magnesium and strontium will both deposit. The control step of codeposition process of Mg and Sr is not diffusion control step. The codeposition current condition of Mg and Sr to form Mg-Sr alloy by chronoptentiometry is as follows: cathode current densities are higher than 0.71, 1.57 and 2.83 A/cm^2 in MgCl2-SrCl2-KCl melts with MgCl2 concentrations of 2%, 5% and 10% (mass fraction), respectively. Key words:
基金supported by the National Science Foundation for Young Scientists of China (51202171)~~
文摘A molten salt method was developed to prepare porous La1‐xSrxMn0.8Fe0.2O3 (0≤ x ≤ 0.6) micro‐spheres using hierarchical porous δ‐MnO2 microspheres as a template in eutectic NaNO3‐KNO3. X‐ray diffraction patterns showed that single phase LaMn0.8Fe0.2O3 with good crystallinity was syn‐thesized at 450℃ after 4 h. Transmission electron microscope images exhibited that the LaMn0.8Fe0.2O3 sample obtained at 450?? after 4 h possessed a porous spherical morphology com‐posed of aggregated nanocrystallites. Field emission scanning electron microscope images indicated that the growth of the porous LaMn0.8Fe0.2O3 microspheres has two stages. SEM pictures showed that a higher calcination temperature than 450?? had an adverse effect on the formation of a po‐rous spherical structure. The LaMn0.8Fe0.2O3 sample obtained at 450?? after 4 h displayed a high BET surface area of 55.73 m2/g with a pore size of 9.38 nm. Fourier transform infrared spectra suggested that Sr2+ions entered the A sites and induced a decrease of the binding energy between Mn and O. The CO conversion with the La1‐xSrxMn0.8Fe0.2O3 (0≤x≤0.6) samples indicated that the La0.4Sr0.6Mn0.8Fe0.2O3 sample had the best catalytic activity and stability. Further analysis by X‐ray photoelectron spectroscopy demonstrated that Sr2+doping altered the content of Mn4+ions, oxygen vacancies and adsorbed oxygen species on the surface, which affected the catalytic performance for CO oxidation.
基金Projects(51104182,51234009)supported by the National Natural Science Foundation of China
文摘The interaction between molten Na2CO3-Na Cl salt and Sb and the solubility of Sb in molten salt were investigated in the temperature range of 700-1000 °C.The results show that the dissolution equilibrium of Sb in molten salt can be achieved in 3 h,and the amount of Sb dissolved in the melt decreases as the viscosity decreases.The solubility limits in an eutectic mixture were determined as 5.42%,2.42%,0.75% and 0.68% at 700,800,900 and 1000 °C,respectively.A high temperature and appropriate content of Na Cl will decrease the dissolution of Sb.The insoluble Sb was collected at the bottom of molten salt.The Sb dissolved on the surface of the molten salt is easily oxidized,whereas the Sb dissolved inside the molten salt is randomly distributed in terms of the form of metal Sb.
基金Projects(51202297,81372464,51472271)supported by the National Natural Science Foundation of ChinaProject(NCET-12-0554)supported by the New Century Excellent Talents in UniversityProject(2013CB932901)supported by the National Basic Research Program of China
文摘A cost-effective carbon-free nanocoating strategy was developed for the synthesis of ultra-fine SnO2 coatingα-Fe2O3 core-shell nanoparticles. This strategy only involves a two-step molten salt reaction at low temperature of 300 °C. The as-preparedα-Fe2O3@SnO2 core-shell nanocomposites show enhanced electrochemical performances than the bareα-Fe2O3 nanoparticles. This involved metal oxide nanocoating method is easy to be carried out, and the heat treatment temperature is much lower than that of other traditional solid-state annealing method and many carbon or metal oxide nanocoating methods. The molten salt method may also be used to produce other metal oxides coating nanostructures as the electrode materials for lithium-ion batteries.
基金Projects(51474245,51571214)supported by the National Natural Science Foundation of ChinaProjects(2015GK3004,2015JC3006)supported by the Science and Technology Project of Hunan Province,ChinaProject(P2014-07)supported by the Open Fund of State Key Laboratory of Materials Processing and Die&Mould Technology,China
文摘The hydrogenation reaction of electrolyzed titanium, as the first step during hydrogenation-dehydrogenation for the preparation of titanium powder, was studied. The titanium hydride was prepared through the reaction between electrolyzed titanium and hydrogen at different hydrogenation temperatures and different time. The evolutions of hydrogen and oxygen contents, density, hardness and phase composition before and after hydrogenation were characterized under different hydrogenation conditions. The results show that the main phases of titanium hydride were TiHl.924, TiH1.971 and TiH2. Increasing the hydrogenation temperature could not enhance the hydrogen content but increase the oxygen content. The effect of the hydrogenation time on the hydrogen content was not obvious. The optimal parameters of the hydrogenation process were obtained: beating at 400℃ and holding for 2 h, by which the hydrogen content of 3.63% and oxygen content of 0.18% (mass fraction) can be obtained. In addition, the microstructure, orientations and tissues of electrolyzed titanium and titanium hydride were detected.