期刊文献+
共找到10,793篇文章
< 1 2 250 >
每页显示 20 50 100
Molybdenum isotope composition of the upper mantle and its origin:insight from mid-ocean ridge basalt
1
作者 Shuo CHEN 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第3期705-708,共4页
The molybdenum(Mo)isotope system is pivotal in reconstructing marine redox changes throughout Earth’s history and has emerged as a promising tracer for igneous and metamorphic processes.Understanding its composition ... The molybdenum(Mo)isotope system is pivotal in reconstructing marine redox changes throughout Earth’s history and has emerged as a promising tracer for igneous and metamorphic processes.Understanding its composition and variation across major geochemical reservoirs is essential for its application in investigating high-temperature processes.However,there is debate regarding theδ^(98/95)Mo value of the Earth’s mantle,with estimates ranging from sub-chondritic to super-chondritic values.Recent analyses of global mid-ocean ridge basalt(MORB)glasses revealed significantδ^(98/95)Mo variations attributed to mantle heterogeneity,proposing a two-component mixing model to explain the observed variation.Complementary studies confirmed the sub-chondriticδ^(98/95)Mo of the depleted upper mantle,suggesting remixing of subduction-modified oceanic crust as a plausible mechanism.These findings underscore the role of Mo isotopes as effective tracers for understanding dynamic processes associated with mantle-crustal recycling. 展开更多
关键词 molybdenum(Mo)isotope MANTLE crustal recycling mid-ocean ridge basalt(MORB)
下载PDF
Robust T_c in element molybdenum up to 160 GPa
2
作者 吴新月 郭淑敏 +8 位作者 郭鉴宁 陈诉 王煜龙 张可欣 朱程程 刘晨晨 黄晓丽 段德芳 崔田 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期188-193,共6页
Element superconductors with the single atoms provide clean and fundamental platforms for studying superconductivity.Although elements with d electrons are usually not favored by conventional BCS,the record supercondu... Element superconductors with the single atoms provide clean and fundamental platforms for studying superconductivity.Although elements with d electrons are usually not favored by conventional BCS,the record superconducting critical temperature(T_(c))in element scandium(S_(c))has further ignited the intensive attention on transition metals.The element molybdenum(M_o)with a half-full d-orbital is studied in our work,which fills the gap in the study of Mo under high pressure and investigates the pressure dependence of superconductivity.In this work,we exhibit a robust superconductivity of Mo in the pressure range of 5 GPa to 160 GPa via high-pressure electrical transport measurements,the T_(c) varies at a rate of0.013 K/GPa to 8.56 K at 160 GPa.Moreover,the superconductivity is evidenced by the T_(c) shifting to lower temperature under applied magnetic fields,and the upper critical magnetic fields are extrapolated by the WHH equation and GL equation;the results indicate that the maximum upper critical magnetic field is estimated to be 8.24 T at 137 GPa.We further investigate the superconducting mechanism of Mo,the theoretical calculations indicate that the superconductivity can be attributed to the strong coupling between the electrons from the partially filled d band and the phonons from the frequency zone of 200-400 cm^(-1). 展开更多
关键词 molybdenum element superconductor high pressure SUPERCONDUCTiViTY
下载PDF
Multiscale confinement nitridation in molybdenum carbide for efficient hydrogen production
3
作者 Liming Dai Chenchen Fang +10 位作者 Xiaoyuan Zhang Xuefeng Xu Xuanxuan Chen Xinyue Zong Xueming Hu Wenyao Zhang Liang Xue Pan Xiong Yongsheng Fu Jingwen Sun Junwu Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期61-69,共9页
The molybdenum carbide(Mo_(2)C)has been regarded as one of the most cost-efficient and stable electrocatalyst for the hydrogen evolution reaction(HER)by the virtue of its Pt-like electronic structures.However,the inhe... The molybdenum carbide(Mo_(2)C)has been regarded as one of the most cost-efficient and stable electrocatalyst for the hydrogen evolution reaction(HER)by the virtue of its Pt-like electronic structures.However,the inherent limitation of high density of empty valence band significantly reduces its catalytic reactivity by reason of strong hydrogen desorption resistance.Herein,we propose a multiscale confinement synthesis method to design the nitrogen-rich Mo_(2)C for modulating the band structure via decomposing the pre-coordination bonded polymer in a pressure-tight tube sealing system.Pre-bonded c/N-Mo in the coordination precursor constructs a micro-confinement space,enabling the homogeneous nitrogenization in-situ happened during the formation of Mo_(2)C.Simultaneously,the evolved gases from the precursor decomposition in tube sealing system establish a macro-confinement environment,preventing the lattice N escape and further endowing a continuous nitridation.Combining the multiscale confinement effects,the nitrogen-rich Mo2C displays as high as 25%N-Mo concentration in carbide lattice,leading to a satisfactory band structure.Accordingly,the constructed nitrogen-rich Mo_(2)C reveals an adorable catalytic activity for HER in both alkaline and acid solution.It is anticipated that the multiscale confinement synthesis strategy presents guideline for the rational design of electrocatalysts and beyond. 展开更多
关键词 molybdenum carbide Hydrogen evolution reaction Multiscale confinement synthesis Valence band modulation Nitrogen doping
下载PDF
Preparation of sodium molybdate from molybdenum concentrate by microwave roasting and alkali leaching
4
作者 Fengjuan Zhang Chenhui Liu +2 位作者 Srinivasakannan Chandrasekar Yingwei Li Fuchang Xu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期91-105,共15页
The preparation process of sodium molybdate has the disadvantages of high energy consumption,low thermal efficiency,and high raw material requirement of molybdenum trioxide,in order to realize the green and efficient ... The preparation process of sodium molybdate has the disadvantages of high energy consumption,low thermal efficiency,and high raw material requirement of molybdenum trioxide,in order to realize the green and efficient development of molybdenum concentrate resources,this paper proposes a new process for efficient recovery of molybdenum from molybdenum concentrate and preparation of sodium molybdate by microwave-enhanced roasting and alkali leaching.Thermodynamic analysis indicated the feasibility of oxidation roasting of molybdenum concentrate.The effects of roasting temperature,holding time,and power-to-mass ratio on the oxidation product and leaching product sodium molybdate (Na_(2)MoO_(4)·2H_(2)O) were investigated.Under the optimal process conditions:roasting temperature of 700℃,holding time of 110 min,and power-to-mass ratio of 110 W/g,the molybdenum state of existence was converted from MoS_(2) to Mo O3.The process of preparing sodium molybdate by alkali leaching of molybdenum calcine was investigated,the optimal leaching conditions include a solution concentration of 2.5 mol/L,a liquid-to-solid ratio of 2 mL/g,a leaching temperature of 60℃,and leaching solution termination at pH 8.The optimum conditions result in a leaching rate of sodium molybdate of 96.24%.Meanwhile,the content of sodium molybdate reaches 94.08wt%after leaching and removing impurities.Iron and aluminum impurities can be effectively separated by adjusting the pH of the leaching solution with sodium carbonate solution.This research avoids the shortcomings of the traditional process and utilizes the advantages of microwave metallurgy to prepare high-quality sodium molybdate,which provides a new idea for the highvalue utilization of molybdenum concentrate. 展开更多
关键词 molybdenum metallurgy microwave oxidation roasting removing impurities sodium hydroxide leaching
下载PDF
Measurement of 2p-3d absorption in a hot molybdenum plasma
5
作者 Gang Xiong Bo Qing +17 位作者 Zhiyu Zhang Longfei Jing Yang Zhao Minxi Wei Yimeng Yang Lifei Hou Chengwu Huang Tuo Zhu Tianming Song Min Lv Yan Zhao Yuxue Zhang Guohong Yang Zeqing Wu Jun Yan Yaming Zou Jiyan Zhang Jiamin Yang 《Matter and Radiation at Extremes》 SCIE EI CSCD 2024年第4期68-79,共12页
We present measurements of the 2p-3d transition opacity of a hot molybdenum-scandium sample with nearly half-vacant molybdenum M-shell configurations.A plastic-tamped molybdenum-scandium foil sample is radiatively hea... We present measurements of the 2p-3d transition opacity of a hot molybdenum-scandium sample with nearly half-vacant molybdenum M-shell configurations.A plastic-tamped molybdenum-scandium foil sample is radiatively heated to high temperature in a compact D-shaped gold Hohlraum driven by∼30 kJ laser energy at the SG-100 kJ laser facility.X rays transmitted through the molybdenum and scandium plasmas are diffracted by crystals and finally recorded by image plates.The electron temperatures in the sample in particular spatial and temporal zones are determined by the K-shell absorption of the scandium plasma.A combination of the IRAD3D view factor code and the MULTI hydrodynamic code is used to simulate the spatial distribution and temporal behavior of the sample temperature and density.The inferred temperature in the molybdenum plasma reaches a average of 138±11 eV.A detailed configuration-accounting calculation of the n=2–3 transition absorption of the molybdenum plasma is compared with experimental measurements and quite good agreement is found.The present measurements provide an opportunity to test opacity models for complicated M-shell configurations. 展开更多
关键词 molybdenum ABSORPTiON CONFiGURATiON
下载PDF
Molybdenum disulfide as hydrogen evolution catalyst:From atomistic to materials structure and electrocatalytic performance 被引量:1
6
作者 Mohsin Muhyuddin Giorgio Tseberlidis +7 位作者 Maurizio Filippo Acciarri Oran Lori Massimiliano D'Arienzo Massimiliano Cavallini Plamen Atanassov Lior Elbaz Alessandro Lavacchi Carlo Santoro 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期256-285,I0007,共31页
Hydrogen production via water electrolysis defines the novel energy vector for achieving a sustainable society.However,the true progress of the given technology is hindered by the sluggish and complex hydrogen evoluti... Hydrogen production via water electrolysis defines the novel energy vector for achieving a sustainable society.However,the true progress of the given technology is hindered by the sluggish and complex hydrogen evolution reaction(HER)occurring at the cathodic side of the system where overpriced and scarce Pt-based electrocatalysts are usually employed.Therefore,efficient platinum group metals(PGMs)-free electrocatalysts to carry out HER with accelerated kinetics are urgently demanded.In this scenario,molybdenum disulfide(MoS_(2))owing to efficacious structural attributes and optimum hydrogen-binding free energy(ΔG_(H*))is emerging as a reliable alternative to PGMs.However,the performance of MoS_(2)-based electrocatalysts is still far away from the benchmark performance.The HER activity of MoS_(2)can be improved by engineering the structural parameters i.e.,doping,defects inducement,modulating the electronic structure,stabilizing the 1 T phase,creating nanocomposites,and altering the morphologies using appropriate fabrication pathways.Here,we have comprehensively reviewed the majority of the scientific endeavors published in recent years to uplift the HER activity of MoS_(2)-based electrocatalysts using different methods.Advancements in the major fabrication strategies including hydrothermal synthesis methods,chemical vapor deposition,exfoliation techniques,plasma treatments,chemical methodologies,etc.to tune the structural parameters and hence their ultimate influence on the electrocatalytic activity in acidic and/or alkaline media have been thoroughly discussed.This study can provide encyclopedic insights about the fabrication routes that have been pursued to improve the HER performance of MoS_(2)-based electrocatalysts. 展开更多
关键词 Hydrogen evolution reaction molybdenum disulphide ELECTROCATALYSTS Synthesis techniques Sustainable energy production Water electrolysis
下载PDF
Mesoporous molybdenum carbide for greatly enhanced hydrogen evolution at high current density and its mechanism studies 被引量:1
7
作者 Juan Li Chun Tang +2 位作者 Heng Zhang Zhuo Zou Chang Ming Li 《Materials Reports(Energy)》 2023年第3期48-54,共7页
Currently the catalysis of hydrogen evolution reaction(HER)is mainly focused on the inherent electrocatalytic activity at relatively lower current densities while scarce at high current densities.Nevertheless,the latt... Currently the catalysis of hydrogen evolution reaction(HER)is mainly focused on the inherent electrocatalytic activity at relatively lower current densities while scarce at high current densities.Nevertheless,the latter is highly demanding in efficient mass-production of hydrogen.A SiO_(2) nanospheres template-synthesis is used to prepare mesoporous molybdenum carbide nanocrystals-embedded nitrogen-doped carbon foams(mp-Mo_(2)C/NC).The material shows much more excellent catalytic activity than the non-etched Mo_(2)C/NC toward hydrogen evolution reaction(HER)in acidic medium.More interestingly mp-Mo_(2)C/NC still has larger overpotential than Pt/C at lower current densities,but possess remarkably smaller overpotential than the latter at higher current densities for much better electrocatalytic performance.An approach is developed to investigate the electrode kinetics by Tafel plots,especially with eliminating the diffusion effect,indicating that Pt/C and mp-Mo_(2)C/NC display different reaction mechanisms.At low current densities the former presents reversible reaction,while the latter shows mixed electrochemical polarization/reversible electrode process.In the region of higher current densities,the former becomes totally gas-diffusion controlled with large overpotential,while the latter can still retain an electrode polarization process for much lower overpotential at the same current density.Result endorses that the meso-porously structured mp-Mo_(2)C/NC plays a critical role in avoiding gas diffusion control-resulting large overpotential at high current densities.This work holds great potential for an inexpensive catalyst better than Pt/C in practical applications of mass-production hydrogen at high current densities,while clearly shedding fundamental lights on designs of rational HER catalysts for the uses at high current densities. 展开更多
关键词 Porous molybdenum carbides Tafel analysis Hydrogen evolution Electrode kinetics Diffusion effect on Tafel behaviors
下载PDF
钼铼合金表面MoSi2涂层制备及其结构性能
8
作者 喻冲 刘喆 +1 位作者 秦媛 夏季斌 《内蒙古科技大学学报》 CAS 2024年第2期200-204,共5页
采用包埋渗法在钼铼合金基体上制备MoSi2涂层,探讨包埋渗工艺条件对涂层厚度的影响,通过X射线衍射、扫描电镜等手段研究所制备涂层的理化特性。研究结果表明:渗剂中氟化钠活化剂的用量、热处理温度及保温时间对涂层厚度具有显著影响。... 采用包埋渗法在钼铼合金基体上制备MoSi2涂层,探讨包埋渗工艺条件对涂层厚度的影响,通过X射线衍射、扫描电镜等手段研究所制备涂层的理化特性。研究结果表明:渗剂中氟化钠活化剂的用量、热处理温度及保温时间对涂层厚度具有显著影响。当渗剂中硅粉、氟化钠、氧化铝的重量比为30∶5∶65,热处理温度为1 000℃,保温时间为2 h时,所制备得到的涂层均匀性较好,涂层厚度约25μm。 展开更多
关键词 包埋渗法 钼铼合金 硅化物涂层 涂层厚度
下载PDF
Active MoS_(2)-based electrode for green ammonia synthesis 被引量:1
9
作者 Xin Liu Lei Yang +2 位作者 Tao Wei Shanping Liu Beibei Xiao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期268-275,共8页
Nitrogen electro-reduction under mild conditions is one promising alternative approach of the energyconsuming Haber-Bosch process for the artificial ammonia synthesis.One critical aspect to unlocking this technology i... Nitrogen electro-reduction under mild conditions is one promising alternative approach of the energyconsuming Haber-Bosch process for the artificial ammonia synthesis.One critical aspect to unlocking this technology is to discover the catalysts with high selectivity and efficiency.In this work,the N_(2)-to-NH_(3)conversion on the functional MoS_(2)is fully investigated by density functional theory calculations since the layered MoS_(2)provides the ideal platform for the elaborating copies of the nitrogenase found in nature,wherein the functionalization is achieved via basal-adsorption,basal-substitution or edge-substitution of transition metal elements.Our results reveal that the edge-functionalization is a feasible strategy for the activity promotion;however,the basal-adsorption and basal-substitution separately suffer from the electrochemical instability and the NRR inefficiency.Specifically,MoS_(2)functionalized via edge W-substitution exhibits an exceptional activity.The energetically favored reaction pathway is through the distal pathway and a limiting potential is less than 0.20 V.Overall,this work escalates the rational design of the high-effective catalysts for nitrogen fixation and provides the explanation why the predicated catalyst have a good performance,paving the guidance for the experiments. 展开更多
关键词 Nitrogen reduction reaction Density functional theory calculations molybdenum disulfide ELECTROCHEMiSTRY CATALYST THERMODYNAMiCS
下载PDF
Differences between total amount of heavy metals and their occurrence form contents in the wastelands of a molybdenum mine area
10
作者 Ping Shi Jing Huang +2 位作者 Zecan Wu Aoshuang Chen Guangxin Zhang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第2期210-217,共8页
In a single sample plot,the total amount of heavy metals in the soil could not necessarily reflect the contents of their effective states.This must be considered when attempting to determine the degree of soil heavy-m... In a single sample plot,the total amount of heavy metals in the soil could not necessarily reflect the contents of their effective states.This must be considered when attempting to determine the degree of soil heavy-metal pollution in an area.In the present study,the soil around the molybdenum mining area in Huludao,China,was surveyed and sampled to evaluate soil heavy-metal pollution using the Nemerow multifactor pollution index method.The Tessier continuous extraction method was used to analyze the distribution of heavy-metal forms'and their content changes in the soil of this area.Thus,the bioactivity of heavy metals in the soil,the absorption of heavy metals by plants,and the distribution of heavy metals in plants were explored to provide data supporting the use of phytoremediation technology to treat the heavy-metal pollution in the molybdenum mining area and develop ecological restoration strategies for the area's wastelands.The pollution index results indicate that heavy-metal pollution in the soil around the tailings pond is severe,mainly due to Pb and Zn heavy metals.Heavy-metal pollution in the surrounding land is mainly due to Cd and Zn.Content analysis of the heavy-metal forms/states in soils shows that exchangeable forms,which are most effective and toxic to plants,of the following metals are highest in the following areas:Cd,Cu,and Zn in the mountains around the stope;Zn,Mo,and Cu in the cultivated land around the dump;and Cd,Zn,and Mo in the cultivated land around the tailings pond.The pollution index analysis provides a basic overview of soil heavy-metal pollution across the entire mining area.However,content analysis of heavy-metal forms/states better reflects the relationship between the availability of heavy metals in the soil and the effectiveness of plants.Thus,the latter analysis can help ensure that phytoremediation strategies are adequately targeted,science-based,and effective. 展开更多
关键词 molybdenum mining WASTELAND Soil pollution Heavy metal BiOAVAiLABiLiTY PHYTOREMEDiATiON
下载PDF
Molybdenum tailored Co^(0)/Co^(2+)active pairs on a perovskite-type oxide for direct ethanol synthesis from syngas
11
作者 Yi Wu Pengfei Song +2 位作者 Ningyan Li Yanan Jiang Yuan Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第7期279-289,共11页
Selective synthesis of ethanol from syngas under the Co-based catalysts is still challenging due to the hard of regulating the active site Co^(0) and Co^(2+)ratio.In this work,a series of CaTi_(0.9-x)Co_(x)Mo_(0.1)O_(... Selective synthesis of ethanol from syngas under the Co-based catalysts is still challenging due to the hard of regulating the active site Co^(0) and Co^(2+)ratio.In this work,a series of CaTi_(0.9-x)Co_(x)Mo_(0.1)O_(3)(x=0,0.1-0.4)and CaTi_(0.7)Co_(0.3)O_(3) catalysts were prepared by using citric acid complexation method to promote the synthesis of ethanol.It was found that Mo species in the perovskite lattice can regulate the Co^(0) and Co^(2+)ratio through the domain-limiting effect of perovskite and the degree of Co reduction could be adjusted by changing the Co/Mo molar ratio.Among these investigated catalysts,the total selectivity of alcohols over the catalyst with the optimal Co/Mo ratio CaTi_(0.6)Co_(0.3)Mo_(0.1)O_(3) reached 39.1%,with ethanol accounting for 74.7%,which was ascribed to the moderate and tightly bound ratio of dissociative to non-dissociative adsorption sites on the surface and the balance of CH_(x)-CH_(y) coupling and C^(O) insertion. 展开更多
关键词 Direct ethanol synthesis Cobalt molybdenum SYNGAS Perovskite-type oxides
下载PDF
Energy Transfer Dynamics between Carbon Quantum Dots and Molybdenum Disulfide Revealed by Transient Absorption Spectroscopy
12
作者 Ruixiang Wu Xin Liu +4 位作者 Xiaoshuai Wang Jingjing Luo Bin Li Shengzhi Wang Xiangyang Miao 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2023年第5期503-508,I0001,共7页
Zero-dimensional environmentally friendly carbon quantum dots(CQDs)combined with two-di-mensional materials have a wide range of applications in optoelec-tronic devices.We combined steady-state and transient absorp-ti... Zero-dimensional environmentally friendly carbon quantum dots(CQDs)combined with two-di-mensional materials have a wide range of applications in optoelec-tronic devices.We combined steady-state and transient absorp-tion spectroscopies to study the energy transfer dynamics between CQDs and molybdenum disulfide(MoS_(2)).Transient absorption plots showed photoinduced absorption and stimulated emission features,which involved the intrinsic and defect states of CQDs.Adding MoS_(2)to CQDs solution,the lowest unoccupied molecular orbital of CQDs transferred energy to MoS_(2),which quenched the intrinsic emission at 390 nm.With addition of MoS_(2),CQD-MoS_(2)composites quenched defect emission at 490 nm and upward absorption,which originated from another energy transfer from the defect state.Two energy transfer paths between CQDs and MoS_(2)were efficiently manipulated by changing the concentration of MoS_(2),which laid a foundation for improving device performance. 展开更多
关键词 Energy transfer Transient absorption spectroscopy Carbon quantum dot molybdenum disulfide
下载PDF
Create Rich Oxygen Defects of Unique Tubular Hierarchical Molybdenum Dioxide to Modulate Electron Transfer Rate for Superior High-Energy Metal-Ion Hybrid Capacitor
13
作者 Heng Zhang Jinggao Wu +7 位作者 Zhuo Zou Youcun Bai Chao Wu Qingxin Zeng Feng Liu Wei Shen Jian Jiang Chang Ming Li 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期193-204,共12页
Metal-ion capacitors could merit advantages from both batteries and capacitors,but they need to overcome the severe restrictions from their sluggish reaction kinetics of the battery type electrode and low specific cap... Metal-ion capacitors could merit advantages from both batteries and capacitors,but they need to overcome the severe restrictions from their sluggish reaction kinetics of the battery type electrode and low specific capacitance of capacitor type electrode for both high energy and power density.Herein,we use the Kirkendall effect for the first time to synthesize unique tubular hierarchical molybdenum dioxide with encapsulated nitrogen-doped carbon sheets while in situ realizing phosphorus-doping to create rich oxygen vacancies(P-MoO_(2-x)@NP-C)as a sodium-ion electrode.Experimental and theoretical analysis confirm that the P-doping introduced oxygen defects can partially convert the high-bond-energy Mo–O to low-bond-energy Mo–P,resulting in a low oxidation state of molybdenum for enhanced surface reactivity and rapid reaction kinetics.The as-prepared P-MoO_(2-x)@NP-C as an ion-battery electrode is further used to pair active N-doped carbon nanosheet(N-C-A)electrode for Na-ion hybrid capacitor,delivering excellent performance with an energy density of 140.3 Wh kg^(−1),a power density of 188.5 W kg^(−1)and long stable life in non-aqueous solution,which ranks the best among all reported MoO x-based hybrid capacitors.P-MoO_(2-x)@NP-C is also used to fabricate a zinc-ion hybrid capacitor,also accomplishing a remarkable energy density of 43.8 Wh kg^(−1),a power density of 93.9 W kg^(−1),and a long stable life@2A g^(−1)of 32000 cycles in aqueous solutions,solidly verifying its universal significance.This work not only demonstrates an innovative approach to synthesize high-performance metal ion hybrid capacitor materials but also reveals certain scientific insights into electron transfer enhancement mechanisms. 展开更多
关键词 molybdenum dioxide oxygen vacancies phosphorus incorporation sodium-ion hybrid capacitor Zinc-ion hybrid capacitor
下载PDF
Geology and mineralization of the Daheishan supergiant porphyry molybdenum deposit(1.65 Bt),Jilin,China:A review
14
作者 Nan Ju Di Zhang +11 位作者 Guo-bin Zhang Sen Zhang Chuan-tao Ren Yun-sheng Ren Hui Wang Yue Wu Xin Liu Lu Shi Rong-rong Guo Qun Yang Zhen-ming Sun Yu-jie Hao 《China Geology》 CAS CSCD 2023年第3期494-530,共37页
The Daheishan supergiant porphyry molybdenum deposit(also referred to as the Daheishan deposit)is the second largest molybdenum deposit in Asia and ranks fifth among the top seven molybdenum deposits globally with tot... The Daheishan supergiant porphyry molybdenum deposit(also referred to as the Daheishan deposit)is the second largest molybdenum deposit in Asia and ranks fifth among the top seven molybdenum deposits globally with total molybdenum reserves of 1.65 billion tons,an average molybdenum ore grade of 0.081%,and molybdenum resources of 1.09 million tons.The main ore body is housed in the granodiorite porphyry plutons and their surrounding inequigranular granodiorite plutons,with high-grade ores largely located in the ore-bearing granodiorite porphyries in the middle-upper part of the porphyry plutons.Specifically,it appears as an ore pipe with a large upper part and a small lower part,measuring about 1700 m in length and width,extending for about 500 m vertically,and covering an area of 2.3 km^(2).Mineralogically,the main ore body consists of molybdenite,chalcopyrite,and sphalerite horizontally from its center outward and exhibits molybdenite,azurite,and pyrite vertically from top to bottom.The primary ore minerals include pyrite and molybdenite,and the secondary ore minerals include sphalerite,chalcopyrite,tetrahedrite,and scheelite,with average grades of molybdenum,copper,sulfur,gallium,and rhenium being 0.081%,0.033%,1.67%,0.001%,and 0.0012%,respectively.The ore-forming fluids of the Daheishan deposit originated as the CO_(2)-H_(2)O-NaCl multiphase magmatic fluid system,rich in CO_(2)and bearing minor amounts of CH4,N2,and H2S,and later mixed with meteoric precipitation.In various mineralization stages,the ore-forming fluids had homogenization temperatures of>420℃‒400℃,360℃‒350℃,340℃‒230℃,220℃‒210℃,and 180℃‒160℃and salinities of>41.05%‒9.8%NaCleqv,38.16%‒4.48%NaCleqv,35.78%‒4.49%NaCleqv,7.43%NaCleqv,and 7.8%‒9.5%NaCleqv,respectively.The mineralization of the Daheishan deposit occurred at 186‒167 Ma.The granites closely related to the mineralization include granodiorites(granodiorite porphyries)and monzogranites(monzogranite porphyries),which were mineralized after magmatic evolution(189‒167 Ma).Moreover,these mineralization-related granites exhibit low initial strontium content and high initial neodymium content,indicating that these granites underwent crust-mantle mixing.The Daheishan deposit formed during the Early-Middle Jurassic,during which basaltic magma underplating induced the lower-crust melting,leading to the formation of magma chambers.After the fractional crystallization of magmas,ore-bearing fluids formed.As the temperature and pressure decreased,the ore-bearing fluids boiled drops while ascending,leading to massive unloading of metal elements.Consequently,brecciated and veinlet-disseminated ore bodies formed. 展开更多
关键词 molybdenum deposit Porphyry type Granodiorite porphyry Crust-mantle mixing METALLiZATiON U-Pb age O-S-Pb isotope Re isotope inclusion type Ore-bearing fluid Metallogenic model Prospecting model Mineral exploration engineering
下载PDF
Properties of a MOS Device on Single Layer Molybdenum Disulfide
15
作者 Ravi Kumar Chanana 《材料科学与工程(中英文A版)》 2023年第1期26-29,共4页
The properties of a metal-oxide-semiconductor device on a single layer MoS_(2)(molybdenum disulfide)semiconductor are determined theoretically utilizing the concept of physics that the carrier effective masses in mate... The properties of a metal-oxide-semiconductor device on a single layer MoS_(2)(molybdenum disulfide)semiconductor are determined theoretically utilizing the concept of physics that the carrier effective masses in materials are related to the intrinsic Fermi energy levels in materials by the universal mass-energy equivalence equation given as dE/E=dm/m,where E is the energy and m is the mass of the free electron.The known parameters of electron effective mass of 0.48 m and the direct bandgap of 1.8 eV for monolayer MoS_(2) semiconductor are utilized to determine the properties of the MOS(metal-oxide-semiconductor)device,with the given previous research consequence that the threshold for electron heating in SiO_(2) is 2 MV/cm-eV. 展开更多
关键词 molybdenum disulfide mass-energy equivalence MOS device Fowler-Nordheim tunnelling
下载PDF
Membrane-less MoO_(3-x)@TiO_(2)-bromine battery with excellent rate capability and cyclic stability
16
作者 Wenjie Huang Hui Wang +3 位作者 Bin Yuan Liuzhang Ouyang Lichun Yang Min Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期316-321,I0008,共7页
Bromine has attracted significant attention as a cathode material for aqueous batteries due to its high reduction potential of 1.05 V(Br_(3)^(-)+2e~-■3Br~-),impressive theoretical specific capacity of 223 mA h g^(-1)... Bromine has attracted significant attention as a cathode material for aqueous batteries due to its high reduction potential of 1.05 V(Br_(3)^(-)+2e~-■3Br~-),impressive theoretical specific capacity of 223 mA h g^(-1),and rapid reaction kinetics in the electrolyte.However,searching for compatible anode materials to match with bromine has posed a challenge due to its highly corrosive nature.In this study,we developed oxygen-deficient MoO_(3) with TiO_(2) coating(referred to as MoO_(3-x)@TiO_(2))as an anode material to pair with a bromine cathode in static full batteries.The oxygen deficiency contributes to enhanced electronic and protonic diffusion within the MoO_(3-x)lattice,while the TiO_(2) coating mitigates structural dissolution and proton trapping during cycling.The MoO_(3-x)@TiO_(2) demonstrates fast charge storage kinetics and excellent resistance to bromine corrosion.The impressive compatibility between MoO_(3-x)@TiO_(2) and bromine enables the construction of membrane-less full batteries with exceptional rate capability and cyclic stability.The MoO_(3-x)@TiO_(2)-bromine battery achieves an energy density of70.8 W h kg^(-1)at a power density of 328.1 W kg^(-1),showcasing an impressive long-term cyclic life of 20,000 cycles.Our study provides valuable insights for the development of high-performance aqueous secondary batteries. 展开更多
关键词 molybdenum trioxide Oxygen deficiency TiO_(2)coating Compatibility Bromine-based battery
下载PDF
Boosted Electrocatalytic Glucose Oxidation Reaction on Noble-Metal-Free MoO_(3)-Decorated Carbon Nanotubes
17
作者 Yu-Long Men Ning Dou +3 位作者 Yiyi Zhao Yan Huang Lei Zhang Peng Liu 《Transactions of Tianjin University》 EI CAS 2024年第1期63-73,共11页
Electrocatalytic glucose oxidation reaction(GOR)has attracted much attention owing to its crucial role in biofuel cell fabrication.Herein,we load MoO_(3)nanoparticles on carbon nanotubes(CNTs)and use a discharge proce... Electrocatalytic glucose oxidation reaction(GOR)has attracted much attention owing to its crucial role in biofuel cell fabrication.Herein,we load MoO_(3)nanoparticles on carbon nanotubes(CNTs)and use a discharge process to prepare a noblemetal-free MC-60 catalyst containing MoO_(3),Mo_(2)C,and a Mo_(2)C–MoO_(3)interface.In the GOR,MC-60 shows activity as high as 745μA/(mmol/L cm^(2)),considerably higher than those of the Pt/CNT(270μA/(mmol/L cm^(2)))and Au/CNT catalysts(110μA/(mmol/L cm^(2))).In the GOR,the response minimum on MC-60 is as low as 8μmol/L,with a steady-state response time of only 3 s.Moreover,MC-60 has superior stability and anti-interference ability to impurities in the GOR.The better performance of MC-60 in the GOR is attributed to the abundant Mo sites bonding to C and O atoms at the MoO_(3)–Mo_(2)C interface.These Mo sites create active sites for promoting glucose adsorption and oxidation,enhancing MC-60 performance in the GOR.Thus,these results help to fabricate more effi cient noble-metal-free catalysts for the fabrication of glucose-based biofuel cells. 展开更多
关键词 interface eff ect ELECTROCATALYSiS molybdenum oxide GLUCOSE Oxidation reaction
下载PDF
Film Flow of Nano-Micropolar Fluid with Dissipation Effect
18
作者 Abuzar Abid Siddiqui Mustafa Turkyilmazoglu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2487-2512,共26页
The physical problem of the thin film flow of a micropolar fluid over a dynamic and inclined substrate under the influence of gravitational and thermal forces in the presence of nanoparticles is formulated.Five differ... The physical problem of the thin film flow of a micropolar fluid over a dynamic and inclined substrate under the influence of gravitational and thermal forces in the presence of nanoparticles is formulated.Five different types of nanoparticle samples are accounted for in this current study,namely gold Au,silver Ag,molybdenum disulfide MoS_(2),aluminum oxide Al_(2)O_(3),and silicon dioxide SiO_(2).Blood,a micropolar fluid,serves as the common base fluid.An exact closed-form solution for this problem is derived for the first time in the literature.The results are particularly validated against those for the Newtonian fluid and show excellent agreement.It was found that increasing values of the spin boundary condition and micropolarity lead to a reduction in both the thermal and momentum boundary layers.A quantitative decay in the Nusselt number for a micropolar fluid,as compared to a Newtonian one for all the tested nanoparticles,is anticipated.Gold and silver nanoparticles(i)intensify in the flow parameter as the concentration of nanoparticles increases(ii)yield a higher thermal transfer rate,whereas molybdenum disulfide,aluminum oxide,and silicon dioxide exhibit a converse attitude for both Newtonian and micropolar fluids.The reduction in film thickness for fluid comprising gold particles,as compared to the rest of the nanoparticles,is remarkable. 展开更多
关键词 Thin film flow micropolar fluid NANOPARTiCLES molybdenum disulfide inclined substrate
下载PDF
High-throughput calculation-based rational design of Fe-doped MoS_(2) nanosheets for electrocatalytic p H-universal overall water splitting
19
作者 Guangtong Hai Xiangdong Xue +3 位作者 Zhenyu Wu Canyang Zhang Xin Liu Xiubing Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期194-202,共9页
Electrocatalytic water splitting is crucial for H2generation via hydrogen evolution reaction(HER)but subject to the sluggish dynamics of oxygen evolution reaction(OER).In this work,single Fe atomdoped MoS_(2)nanosheet... Electrocatalytic water splitting is crucial for H2generation via hydrogen evolution reaction(HER)but subject to the sluggish dynamics of oxygen evolution reaction(OER).In this work,single Fe atomdoped MoS_(2)nanosheets(SFe-DMNs)were prepared based on the high-throughput density functional theory(DFT)calculation screening.Due to the synergistic effect between Fe atom and MoS_(2)and optimized intermediate binding energy,the SFe-DMNs could deliver outstanding activity for both HER and OER.When assembled into a two-electrode electrolytic cell,the SFe-DMNs could achieve the current density of 50 mA cm^(-2)at a low cell voltage of 1.55 V under neutral condition.These results not only confirmed the effectiveness of high-throughput screening,but also revealed the excellent activity and thus the potential applications in fuel cells of SFe-DMNs. 展开更多
关键词 High-throughput calculation Overall water splitting Single atom doped catalyst molybdenum disulfide nanosheet
下载PDF
Nano-Ni-Induced Electronic Modulation of MoS_(2) Nanosheets Enables Energy-Saving H_(2) Production and Sulfide Degradation
20
作者 Fan Liu Xinghong Cai +6 位作者 Yang Tang Wenqian Liu Qianwei Chen Peixin Dong Maowen Xu Yangyang Tan Shujuan Bao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期228-235,共8页
Electrocatalytic hydrogen evolution and sulfion(S^(2-))recycling are promising strategies for boosting H_(2)production and removing environmental pollutants.Here,a nano-Ni-functionalized molybdenum disulfide(MoS_(2))n... Electrocatalytic hydrogen evolution and sulfion(S^(2-))recycling are promising strategies for boosting H_(2)production and removing environmental pollutants.Here,a nano-Ni-functionalized molybdenum disulfide(MoS_(2))nanosheet was assembled on steel mesh(Ni-MoS_(2)/SM)for use in sulfide oxidation reaction-assisted,energy-saving H_(2)production.Experimental and theoretical calculation results revealed that anchoring nano-Ni on high-surface-area slack MoS_(2)nanosheets not only optimized catalyst adsorption of polysulfides but also played an important role in promoting hydrogen evolution reaction kinetics by absorbing OH_(ad),thereby greatly enhancing the catalytic performance toward sulfide oxidation reaction and hydrogen evolution reaction.Meanwhile,the Ni/MoS^(2-)based hydrogen evolution reaction+sulfide oxidation reaction system achieved nearly 100%hydrogen production efficiency and only consumed 61%less power per kWh than the oxygen evolution reaction+hydrogen evolution reaction system,which suggested our proposed Ni-MoS_(2)and novel hydrogen production system are promising for sustainable energy production. 展开更多
关键词 hydrogen evolution reaction low energy consumption molybdenum disulfide sulfide oxidation reaction
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部