The feasibility of the fabrication of coatings for elevated-temperature structural applications by laser cladding MoSi2 pow- der on steel was investigated. A dense and crack-free fine coating, well-bonded with the sub...The feasibility of the fabrication of coatings for elevated-temperature structural applications by laser cladding MoSi2 pow- der on steel was investigated. A dense and crack-free fine coating, well-bonded with the substrate has been obtained by this technique This coating consists of FeMoSi, Fe2Si and a small amount of MosSi3 due to dilution of the substrate in the coating. The microstructure of the coating is characterized of typical fine dendrites, The dendrites are composed of FeMoSi primary phase, and the interdendritic areas are two eutectic phases of FeMoSi and Fe2Si. The hardness of the coating reaches 845 Hv0.5, 3.7 times larger than that of the steel substrate (180 Hv05).展开更多
Starting from elemental powders, complete MoSi2 powder forms abruptly between 3.5and 4 h during mechanical alloying (MA) of the Mo-66 at.% Si powders. Continuous milling of this MoSi2 Phase leads to a nanocrystalline ...Starting from elemental powders, complete MoSi2 powder forms abruptly between 3.5and 4 h during mechanical alloying (MA) of the Mo-66 at.% Si powders. Continuous milling of this MoSi2 Phase leads to a nanocrystalline powder and amorphizationtransformation takes place after 100 h milling. Howeven MA of the Mo-37.5 at.%Si powders does not result in the formation of the Mo5Si3 crystalline phase, but the formation of a Mo(Si) supersaturated solid solution (SSS) and a completely amorphots phase after 5 h and 70 h milling, respectively. The free energy of the Mo-Sisystem has been calculated and it has been found that there is no driving force for the amorphization reaction under normal conditions. The amorphization by MA of the Mo-Si system is attributed to a solid-state amorphization reaction in which defects and a very fine grain size induced during milling process may raise the free energy of the crystalline intermetallic phase (for MoSi2) or the Mo(Si) supersaturated solid solution (for Mo5Si3) above that of the amorphous phase.展开更多
The composition and temperature dependences of site occupation for Al, Cr, W, and Nb in MSi2 are investigated by using a thermodynamics model and first principles calculations. A simple parameter measuring the substit...The composition and temperature dependences of site occupation for Al, Cr, W, and Nb in MSi2 are investigated by using a thermodynamics model and first principles calculations. A simple parameter measuring the substitution energy difference between Si and Mo sites reflects the nature of site occupancy. At 0 K, these elements prefer Si sites in Mo-rich and Mo sites in Si-rich, and show no site preference in stoichiometric MoSi2. At elevated temperature, the site occupation behaviors show strong dependence on both composition and temperature. Some calculated results have been certified in previous experiments.展开更多
基金This work was financially supported by the National Natural Science Foundation of China (No.59836220), the Major Science Re-search Foundation of the Chinese Academy of Science (No.KY951-Al-601-03), and the Science Research Foundation of the Univer-sity of Science and Technology Beijing (No.20041004790)
文摘The feasibility of the fabrication of coatings for elevated-temperature structural applications by laser cladding MoSi2 pow- der on steel was investigated. A dense and crack-free fine coating, well-bonded with the substrate has been obtained by this technique This coating consists of FeMoSi, Fe2Si and a small amount of MosSi3 due to dilution of the substrate in the coating. The microstructure of the coating is characterized of typical fine dendrites, The dendrites are composed of FeMoSi primary phase, and the interdendritic areas are two eutectic phases of FeMoSi and Fe2Si. The hardness of the coating reaches 845 Hv0.5, 3.7 times larger than that of the steel substrate (180 Hv05).
文摘Starting from elemental powders, complete MoSi2 powder forms abruptly between 3.5and 4 h during mechanical alloying (MA) of the Mo-66 at.% Si powders. Continuous milling of this MoSi2 Phase leads to a nanocrystalline powder and amorphizationtransformation takes place after 100 h milling. Howeven MA of the Mo-37.5 at.%Si powders does not result in the formation of the Mo5Si3 crystalline phase, but the formation of a Mo(Si) supersaturated solid solution (SSS) and a completely amorphots phase after 5 h and 70 h milling, respectively. The free energy of the Mo-Sisystem has been calculated and it has been found that there is no driving force for the amorphization reaction under normal conditions. The amorphization by MA of the Mo-Si system is attributed to a solid-state amorphization reaction in which defects and a very fine grain size induced during milling process may raise the free energy of the crystalline intermetallic phase (for MoSi2) or the Mo(Si) supersaturated solid solution (for Mo5Si3) above that of the amorphous phase.
基金Project supported by the National Natural Science Foundation of China(Grant No.51401093)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20130233)
文摘The composition and temperature dependences of site occupation for Al, Cr, W, and Nb in MSi2 are investigated by using a thermodynamics model and first principles calculations. A simple parameter measuring the substitution energy difference between Si and Mo sites reflects the nature of site occupancy. At 0 K, these elements prefer Si sites in Mo-rich and Mo sites in Si-rich, and show no site preference in stoichiometric MoSi2. At elevated temperature, the site occupation behaviors show strong dependence on both composition and temperature. Some calculated results have been certified in previous experiments.