The usability of test results of ship model vertical center of gravity and transverse moment of inertia is generally depends on its uncertainty. Referring to the guidelines for uncertainty analysis in examination of l...The usability of test results of ship model vertical center of gravity and transverse moment of inertia is generally depends on its uncertainty. Referring to the guidelines for uncertainty analysis in examination of liquid dynamic recommended by International Towing Tank Conference ( ITTC), the results were analyzed, bias limits and precision limits were calculated and total uncertainty was estimated. The total uncertainty of six tests on ship model vertical center of gravity is is 0. 16% of the mean value, and the total uncertainty of six tests on ship model transverse moment of inertia is 5.66% of the mean value. The test results show that the total uncertainty of both the multiple tests and the single test is from the precision limits of ship model vertical center of gravity and transverse moment of inertia tests. Thus, the improved measurement system stability can enormously decrease the total uncertainty of multiple tests and the single test.展开更多
Urbanization in modern times led to a series of development strategies that brought new opportunities in China. Rapid urbanization caused severe stress to the ecosystems and the environment. Using the center-of-gravit...Urbanization in modern times led to a series of development strategies that brought new opportunities in China. Rapid urbanization caused severe stress to the ecosystems and the environment. Using the center-of-gravity(COG) method and parameters such as population, economy, and land, we studied the urbanization pattern in Songhua River Basin and its southern source sub-basin from 1990 to 2010. Urbanization was analyzed based on the COG position, eccentric distance, movement direction of COG, and distance of COG movement. Various characteristics of urbanization in the southern source sub-basin of the Songhua River were explained in relation to the whole Songhua River Basin. Urbanization in the southern source sub-basin of the Songhua River is balanced, relatively advanced, and stable compared to the whole Songhua River Basin. The average eccentric distance between the urbanization COGs in the Songhua River′s south source basin indicated rapid expansion of land urbanization during the span of this study. A basic pattern of urbanization COG in the whole Songhua Basin was observed, but there existed differences among the three aspects of urbanization process. Land urbanization is still in its active stage, so future studies should focus on analysis of such urbanization trends.展开更多
This paper studies the location of Wuhan steel logistics distribution center. First of all, according to Wuhan Iron and Steel Plant sales in Hunan Province and the relative position of the city, the transport costs ar...This paper studies the location of Wuhan steel logistics distribution center. First of all, according to Wuhan Iron and Steel Plant sales in Hunan Province and the relative position of the city, the transport costs are calculated from Wuhan Iron and Steel Plant to the demand point. We further analyze the necessity of establishing steel logistics distribution center, using the precise center of gravity to determine the actual location of the distribution center. After the establishment of distribution center, the total freight is reduced by 15.46 million yuan from Wuhan Iron and Steel Plant to each city in Hunan province via distribution center each year. The results of this paper can provide theoretical basis for the logistics node planning of related enterprises.展开更多
Center of gravity(COG)is an important parameter of projectiles and rockets,for which supporting reaction method(or support reaction method)is an important COG measurement method.Based on this supporting reaction metho...Center of gravity(COG)is an important parameter of projectiles and rockets,for which supporting reaction method(or support reaction method)is an important COG measurement method.Based on this supporting reaction method a novel design method is proposed to determine the key design parameters of the COG measurement system.The method can quantitatively analyze the influence of the design parameters on the COG accuracy,in the measurement system designed with supporting reaction method.Using the principle of static balance,the error propagation theory,and the system accuracy analysis method,the equal-range required sensor precision(RSP)surface and non-equal-range required sensor pair precision(RSPP)adapted surface are adopted.The influence of random errors(like sensor accuracy and distance calibration accuracy)is analyzed.The selection strategy of equal-range and non-equal-range sensors is chosen,and then the recommended calibration accuracy values are obtained.For the quality detection accuracy of±0.6 kg and the axial COG detection accuracy of±1.5 mm,the RSP surface is drawn by the proposed method,and the force sensor with±0.23 kg detection accuracy is selected.The experimental verification meets the accuracy requirements and verifies the effectiveness of the proposed design method for the system parameters of the COG measurement equipment.展开更多
Numerical analysis is presented for the characteristic parameters of centered-inclined coupling slot in rectangular waveguides, taking into account the transverse distribution of the electric field across the slot ape...Numerical analysis is presented for the characteristic parameters of centered-inclined coupling slot in rectangular waveguides, taking into account the transverse distribution of the electric field across the slot aperture. Integral equations are formulated based on dyadic Green's function theories and solved using the method of moments. Trigonometric basis functions are adopted. It is found that the method will converge with up to ten basis functions. The characteristic parameters can be easily obtained for different slot sizes. Resonant length and resonant resistance of the coupling slots are calculated. It is shown that the calculated results have very high accuracy, compared with simulated results obtained from commercial software. Therefore, it can be effectively applied in the synthesis of antenna arrays. Effects of the transverse distribution on calculating resonant parameters of the coupling slot are also analyzed. The results show that if the transverse distribution of the electric field is neglected, the calculated error tends to become larger when the slot gets wider or thinner.展开更多
This paper describes the evaluation method of the gait motion in walk rehabilitation. We assume that the evaluation consists of the classification of the measured data and the prediction of the feature of the gait mot...This paper describes the evaluation method of the gait motion in walk rehabilitation. We assume that the evaluation consists of the classification of the measured data and the prediction of the feature of the gait motion. The method may enable a doctor and a physical therapist to recognize the condition of the patients more easily, and increase the motivation of patient further for rehabilitation. However, it is difficult to divide the gait motion into discrete categories, since the gait motion continuously changes and does not have the clear boundaries. Therefore, the self-organizing map (SOM) that is able to arrange the continuous data on the almost continuous map is employed in order to classify them. And, the feature of the gait motion is predicted by the classification. In this study, we adopt the gravity-center fluctuation (GCF) on the sole as the measured data. First, it is shown that the pattern of the CCF that is obtained by our developed measurement system includes the feature of the gait motion. Secondly, the relation between the pattern of the GCF and the feature of the gait motion that the doctor and the physical therapist evaluate by visual inspection is considered using the SOM. Next, we describe the prediction of following features measured by numerical values: the length of stride, the velocity of walk and the difference of steps that are important for the doctor and the physical therapist to make a diagnosis of the condition of the gait motion in walk rehabilitation. Finally, it is investigated that the position of a new test data that is arranged on the map accords with the prediction. As a consequence, we confirm that the method using the SOM is often useful to classify and predict the condition of the patient.展开更多
文摘The usability of test results of ship model vertical center of gravity and transverse moment of inertia is generally depends on its uncertainty. Referring to the guidelines for uncertainty analysis in examination of liquid dynamic recommended by International Towing Tank Conference ( ITTC), the results were analyzed, bias limits and precision limits were calculated and total uncertainty was estimated. The total uncertainty of six tests on ship model vertical center of gravity is is 0. 16% of the mean value, and the total uncertainty of six tests on ship model transverse moment of inertia is 5.66% of the mean value. The test results show that the total uncertainty of both the multiple tests and the single test is from the precision limits of ship model vertical center of gravity and transverse moment of inertia tests. Thus, the improved measurement system stability can enormously decrease the total uncertainty of multiple tests and the single test.
基金National Key Technologies R&D Program(No.2012BAD22B04)Talent Introduction Project of Jilin Province
文摘Urbanization in modern times led to a series of development strategies that brought new opportunities in China. Rapid urbanization caused severe stress to the ecosystems and the environment. Using the center-of-gravity(COG) method and parameters such as population, economy, and land, we studied the urbanization pattern in Songhua River Basin and its southern source sub-basin from 1990 to 2010. Urbanization was analyzed based on the COG position, eccentric distance, movement direction of COG, and distance of COG movement. Various characteristics of urbanization in the southern source sub-basin of the Songhua River were explained in relation to the whole Songhua River Basin. Urbanization in the southern source sub-basin of the Songhua River is balanced, relatively advanced, and stable compared to the whole Songhua River Basin. The average eccentric distance between the urbanization COGs in the Songhua River′s south source basin indicated rapid expansion of land urbanization during the span of this study. A basic pattern of urbanization COG in the whole Songhua Basin was observed, but there existed differences among the three aspects of urbanization process. Land urbanization is still in its active stage, so future studies should focus on analysis of such urbanization trends.
文摘This paper studies the location of Wuhan steel logistics distribution center. First of all, according to Wuhan Iron and Steel Plant sales in Hunan Province and the relative position of the city, the transport costs are calculated from Wuhan Iron and Steel Plant to the demand point. We further analyze the necessity of establishing steel logistics distribution center, using the precise center of gravity to determine the actual location of the distribution center. After the establishment of distribution center, the total freight is reduced by 15.46 million yuan from Wuhan Iron and Steel Plant to each city in Hunan province via distribution center each year. The results of this paper can provide theoretical basis for the logistics node planning of related enterprises.
基金Supported by National Key Research and Development Program of China(2018YFB1306300)。
文摘Center of gravity(COG)is an important parameter of projectiles and rockets,for which supporting reaction method(or support reaction method)is an important COG measurement method.Based on this supporting reaction method a novel design method is proposed to determine the key design parameters of the COG measurement system.The method can quantitatively analyze the influence of the design parameters on the COG accuracy,in the measurement system designed with supporting reaction method.Using the principle of static balance,the error propagation theory,and the system accuracy analysis method,the equal-range required sensor precision(RSP)surface and non-equal-range required sensor pair precision(RSPP)adapted surface are adopted.The influence of random errors(like sensor accuracy and distance calibration accuracy)is analyzed.The selection strategy of equal-range and non-equal-range sensors is chosen,and then the recommended calibration accuracy values are obtained.For the quality detection accuracy of±0.6 kg and the axial COG detection accuracy of±1.5 mm,the RSP surface is drawn by the proposed method,and the force sensor with±0.23 kg detection accuracy is selected.The experimental verification meets the accuracy requirements and verifies the effectiveness of the proposed design method for the system parameters of the COG measurement equipment.
文摘Numerical analysis is presented for the characteristic parameters of centered-inclined coupling slot in rectangular waveguides, taking into account the transverse distribution of the electric field across the slot aperture. Integral equations are formulated based on dyadic Green's function theories and solved using the method of moments. Trigonometric basis functions are adopted. It is found that the method will converge with up to ten basis functions. The characteristic parameters can be easily obtained for different slot sizes. Resonant length and resonant resistance of the coupling slots are calculated. It is shown that the calculated results have very high accuracy, compared with simulated results obtained from commercial software. Therefore, it can be effectively applied in the synthesis of antenna arrays. Effects of the transverse distribution on calculating resonant parameters of the coupling slot are also analyzed. The results show that if the transverse distribution of the electric field is neglected, the calculated error tends to become larger when the slot gets wider or thinner.
基金Project(42274083) supported by the National Natural Science Foundation of ChinaProject(2023JJ30659) supported by Hunan Provincial Natural Science Foundation of China。
基金supported by JSPS KAKENHI(Nos.JP26730118 and JP16K12486)
文摘This paper describes the evaluation method of the gait motion in walk rehabilitation. We assume that the evaluation consists of the classification of the measured data and the prediction of the feature of the gait motion. The method may enable a doctor and a physical therapist to recognize the condition of the patients more easily, and increase the motivation of patient further for rehabilitation. However, it is difficult to divide the gait motion into discrete categories, since the gait motion continuously changes and does not have the clear boundaries. Therefore, the self-organizing map (SOM) that is able to arrange the continuous data on the almost continuous map is employed in order to classify them. And, the feature of the gait motion is predicted by the classification. In this study, we adopt the gravity-center fluctuation (GCF) on the sole as the measured data. First, it is shown that the pattern of the CCF that is obtained by our developed measurement system includes the feature of the gait motion. Secondly, the relation between the pattern of the GCF and the feature of the gait motion that the doctor and the physical therapist evaluate by visual inspection is considered using the SOM. Next, we describe the prediction of following features measured by numerical values: the length of stride, the velocity of walk and the difference of steps that are important for the doctor and the physical therapist to make a diagnosis of the condition of the gait motion in walk rehabilitation. Finally, it is investigated that the position of a new test data that is arranged on the map accords with the prediction. As a consequence, we confirm that the method using the SOM is often useful to classify and predict the condition of the patient.