This study investigates the efficiency of two types of rehabilitation methods based on economic justification that can lead to logical decision making between the retrofitting schemes. Among various rehabilitation met...This study investigates the efficiency of two types of rehabilitation methods based on economic justification that can lead to logical decision making between the retrofitting schemes. Among various rehabilitation methods, concentric chevron bracing(CCB) and cylindrical friction damper(CFD) were selected. The performance assessment procedure of the frames is divided into two distinct phases. First, the limit state probabilities of the structures before and after rehabilitation are investigated. In the second phase, the seismic risk of structures in terms of life safety and financial losses(decision variables) using the recently published FEMA P58 methodology is evaluated. The results show that the proposed retrofitting methods improve the serviceability and life safety performance levels of steel and RC structures at different rates when subjected to earthquake loads. Moreover, these procedures reveal that financial losses are greatly decreased, and were more tangible by the application of CFD rather than using CCB. Although using both retrofitting methods reduced damage state probabilities, incorporation of a site-specific seismic hazard curve to evaluate mean annual occurrence frequency at the collapse prevention limit state caused unexpected results to be obtained. Contrary to CFD, the collapse probability of the structures retrofitted with CCB increased when compared with the primary structures.展开更多
Based on performance-based seismic engineering, this paper proposes an optimal seismic retrofit model for steel moment resisting frames(SMRFs) to generate a retrofit scheme at minimal cost. To satisfy the acceptance...Based on performance-based seismic engineering, this paper proposes an optimal seismic retrofit model for steel moment resisting frames(SMRFs) to generate a retrofit scheme at minimal cost. To satisfy the acceptance criteria for the Basic Safety Objective(BSO) specified in FEMA 356, the minimum number of upgraded connections and their locations in an SMRF with brittle connections are determined by evolutionary computation. The performance of the proposed optimal retrofitting model is evaluated on the basis of the energy dissipation capacities, peak roof drift ratios, and maximum interstory drift ratios of structures before and after retrofitting. In addition, a retrofit efficiency index, which is defined as the ratio of the increment in seismic performance to the required retrofitting cost, is proposed to examine the efficiencies of the retrofit schemes derived from the model. The optimal seismic retrofit model is applied to the SAC benchmark examples for threestory and nine-story SMRFs with brittle connections. Using the retrofit efficiency index proposed in this study, the optimal retrofit schemes obtained from the model are found to be efficient for both examples in terms of energy dissipation capacity, roof drift ratio, and maximum inter-story drift ratio.展开更多
This study investigates the seismic design factors for three reinforced concrete (RC) framed buildings with 4, 16 and 32-stories in Dubai, UAE utilizing nonlinear analysis. The buildings are designed according to th...This study investigates the seismic design factors for three reinforced concrete (RC) framed buildings with 4, 16 and 32-stories in Dubai, UAE utilizing nonlinear analysis. The buildings are designed according to the response spectrum procedure defined in the 2009 International Building Code (IBC'09). Two ensembles of ground motion records with 10% and 2% probability of exceedance in 50 years (10/50 and 2/50, respectively) are used. The nonlinear dynamic resPonses to the earthquake records are computed using IDARC-2D. Key seismic design parameters are evaluated; namely, response modification factor (R), deflection amplification factor (Cd), system overstrength factor (Ωo), and response modification factor for ductility (Rd) in addition to inelastic interstory drift. The evaluated seismic design factors are found to significantly depend on the considered ground motion (10/50 versus 2/50). Consequently, resolution to the controversy of Dubai seismicity is urged. The seismic design factors for the 2/50 records show an increase over their counterparts for the 10/50 records in the range of 200%-400%, except for the D~ factor, which shows a mere 30% increase. Based on the observed trends, perioddependent R and Cd factors are recommended if consistent collapse probability (or collapse prevention performance) in moment frames with varying heights is to be expected.展开更多
The selection and scaling of ground motion records is considered a primary and essential task in performing structural analysis and design.Conventional methods involve using ground motion models and a conditional spec...The selection and scaling of ground motion records is considered a primary and essential task in performing structural analysis and design.Conventional methods involve using ground motion models and a conditional spectrum to select ground motion records based on the target spectrum.This research demonstrates the influence of adopting different weighted factors for various period ranges during matching selected ground motions with the target hazard spectrum.The event data from the Next Generation Attenuation West 2(NGA-West 2)database is used as the basis for ground motion selection,and hazard de-aggregation is conducted to estimate the event parameters of interest,which are then used to construct the target intensity measure(IM).The target IMs are then used to select ground motion records with different weighted vector-valued objective functions.The weights are altered to account for the relative importance of IM in accordance with the structural analysis application of steel moment resisting frame(SMRF)buildings.Instead of an ordinary objective function for the matching spectrum,a novel model is introduced and compared with the conventional cost function.The results indicate that when applying the new cost function for ground motion selection,it places higher demands on structures compared to the conventional cost function.Moreover,submitting more weights to the first-mode period of structures increases engineering demand parameters.Findings demonstrate that weight factors allocated to different period ranges can successfully account for period elongation and higher mode effects.展开更多
Input ground motions have significant impacts on the uncertainty of structural responses in time-history analysis.In this study,records were selected and scaled for the evaluation of mean structural responses accordin...Input ground motions have significant impacts on the uncertainty of structural responses in time-history analysis.In this study,records were selected and scaled for the evaluation of mean structural responses according to the target spectrum.The Newmark-Hall spectrum is closely related to seismic response of short,medium and long-period structures,so it was taken as the target spectrum here.The nonlinear time-history analyses of 9-story and 20-story steel moment-resisting frame structures were carried out as examples.They represent medium and long-period buildings,respectively.Three target spectra with risk of 50%,10%and 2%probabilities for exceedance in 50 years were calculated by the average Newmark-Hall spectrum method for three ground motion sets developed in the SAC Steel Project.The predicted structural mean responses of these Newmark-Hall spectra were compared with those calculated by the average spectral acceleration method for the same record set.It is found that both methods have similar accuracy for estimating the structural mean response.However,the method proposed herein is more effective in reducing the variability of the structural responses.Also,the proposed method is more advantageous for the time-history analysis of long-period structures or structures with more severe nonlinear responses under strong seismic excitations.展开更多
Traditionally,nonlinear time history analysis(NLTHA)is used to assess the performance of structures under fu-ture hazards which is necessary to develop effective disaster risk management strategies.However,this method...Traditionally,nonlinear time history analysis(NLTHA)is used to assess the performance of structures under fu-ture hazards which is necessary to develop effective disaster risk management strategies.However,this method is computationally intensive and not suitable for analyzing a large number of structures on a city-wide scale.Surrogate models offer an efficient and reliable alternative and facilitate evaluating the performance of multiple structures under different hazard scenarios.However,creating a comprehensive database for surrogate mod-elling at the city level presents challenges.To overcome this,the present study proposes meta databases and a general framework for surrogate modelling of steel structures.The dataset includes 30,000 steel moment-resisting frame buildings,representing low-rise,mid-rise and high-rise buildings,with criteria for connections,beams,and columns.Pushover analysis is performed and structural parameters are extracted,and finally,incorporating two different machine learning algorithms,random forest and Shapley additive explanations,sensitivity and explain-ability analyses of the structural parameters are performed to identify the most significant factors in designing steel moment resisting frames.The framework and databases can be used as a validated source of surrogate modelling of steel frame structures in order for disaster risk management.展开更多
This study focuses on the comparison of the Uniform Building Code (UBC) 1997 and International Building Code (IBC) 2003 in relation to the seismic design and analysis of special steel moment resisting frame buildi...This study focuses on the comparison of the Uniform Building Code (UBC) 1997 and International Building Code (IBC) 2003 in relation to the seismic design and analysis of special steel moment resisting frame buildings (SMRF). This paper formulates a numerical study of a steel SMRF building, studied in four different situations, namely: as an office building in San Francisco; as an office building in Sacramento; as an essential facility in San Francisco, and as an essential facility in Sacramento. The analytical results of the model buildings are then compared and analyzed taking note of any significant differences. This case study explores variations in the results obtained using the two codes, particularly the design base shear and drift ratios as they relate to different locations and occupancy use. This study also proves that IBC 2003 is more stringent for the redundancy factor under design category E for the SMRF building, and drift limits for essential facilities.展开更多
A new type of steel moment resisting frame with bottom flange friction devices (BFFDs) has been developed to provide self-centering capacity and energy dissipation, and to reduce permanent deformations under earthqu...A new type of steel moment resisting frame with bottom flange friction devices (BFFDs) has been developed to provide self-centering capacity and energy dissipation, and to reduce permanent deformations under earthquakes. This paper presents a numerical simulation of self-centering beam-column connections with BFFDs, in which the gap opening/closing at the beam-column interfaces is simulated by using pairs of zero-length elements with compression-only material properties, and the energy dissipation due to friction is simulated by using truss elements with specified hysteretic behavior. In particular, the effect of the friction bolt bearing against the slotted plate in the BFFDs was modeled, so that the increase in lateral force and the loss of friction force due to the bolt bearing could be taken into account. Parallel elastic-perfectly plastic gap (ElasticPPGap) materials in the Open System for Earthquake Engineering Simulation (OpenSees) were used with predefined gaps to specify the sequence that each bolt went into the bearing and the corresponding increase in bending stiffness. The MinMax material in OpenSees is used to specify the minimum and maximum values of strains of the ElasticPPGap materials. To consider the loss of friction force due to bok bearing, a number of parallel hysteretic materials were used, and the failure of these materials in sequence simulated the gradual loss of friction force. Analysis results obtained by using the proposed numerical model are discussed and compared with the test results under cyclic loadings and the seismic loading, respectively.展开更多
文摘This study investigates the efficiency of two types of rehabilitation methods based on economic justification that can lead to logical decision making between the retrofitting schemes. Among various rehabilitation methods, concentric chevron bracing(CCB) and cylindrical friction damper(CFD) were selected. The performance assessment procedure of the frames is divided into two distinct phases. First, the limit state probabilities of the structures before and after rehabilitation are investigated. In the second phase, the seismic risk of structures in terms of life safety and financial losses(decision variables) using the recently published FEMA P58 methodology is evaluated. The results show that the proposed retrofitting methods improve the serviceability and life safety performance levels of steel and RC structures at different rates when subjected to earthquake loads. Moreover, these procedures reveal that financial losses are greatly decreased, and were more tangible by the application of CFD rather than using CCB. Although using both retrofitting methods reduced damage state probabilities, incorporation of a site-specific seismic hazard curve to evaluate mean annual occurrence frequency at the collapse prevention limit state caused unexpected results to be obtained. Contrary to CFD, the collapse probability of the structures retrofitted with CCB increased when compared with the primary structures.
基金National Research Foundation of Korea(NRF)under Grant No.2016R1A6A3A11932881
文摘Based on performance-based seismic engineering, this paper proposes an optimal seismic retrofit model for steel moment resisting frames(SMRFs) to generate a retrofit scheme at minimal cost. To satisfy the acceptance criteria for the Basic Safety Objective(BSO) specified in FEMA 356, the minimum number of upgraded connections and their locations in an SMRF with brittle connections are determined by evolutionary computation. The performance of the proposed optimal retrofitting model is evaluated on the basis of the energy dissipation capacities, peak roof drift ratios, and maximum interstory drift ratios of structures before and after retrofitting. In addition, a retrofit efficiency index, which is defined as the ratio of the increment in seismic performance to the required retrofitting cost, is proposed to examine the efficiencies of the retrofit schemes derived from the model. The optimal seismic retrofit model is applied to the SAC benchmark examples for threestory and nine-story SMRFs with brittle connections. Using the retrofit efficiency index proposed in this study, the optimal retrofit schemes obtained from the model are found to be efficient for both examples in terms of energy dissipation capacity, roof drift ratio, and maximum inter-story drift ratio.
文摘This study investigates the seismic design factors for three reinforced concrete (RC) framed buildings with 4, 16 and 32-stories in Dubai, UAE utilizing nonlinear analysis. The buildings are designed according to the response spectrum procedure defined in the 2009 International Building Code (IBC'09). Two ensembles of ground motion records with 10% and 2% probability of exceedance in 50 years (10/50 and 2/50, respectively) are used. The nonlinear dynamic resPonses to the earthquake records are computed using IDARC-2D. Key seismic design parameters are evaluated; namely, response modification factor (R), deflection amplification factor (Cd), system overstrength factor (Ωo), and response modification factor for ductility (Rd) in addition to inelastic interstory drift. The evaluated seismic design factors are found to significantly depend on the considered ground motion (10/50 versus 2/50). Consequently, resolution to the controversy of Dubai seismicity is urged. The seismic design factors for the 2/50 records show an increase over their counterparts for the 10/50 records in the range of 200%-400%, except for the D~ factor, which shows a mere 30% increase. Based on the observed trends, perioddependent R and Cd factors are recommended if consistent collapse probability (or collapse prevention performance) in moment frames with varying heights is to be expected.
基金financial support from Teesside University to support the Ph.D. program of the first author.
文摘The selection and scaling of ground motion records is considered a primary and essential task in performing structural analysis and design.Conventional methods involve using ground motion models and a conditional spectrum to select ground motion records based on the target spectrum.This research demonstrates the influence of adopting different weighted factors for various period ranges during matching selected ground motions with the target hazard spectrum.The event data from the Next Generation Attenuation West 2(NGA-West 2)database is used as the basis for ground motion selection,and hazard de-aggregation is conducted to estimate the event parameters of interest,which are then used to construct the target intensity measure(IM).The target IMs are then used to select ground motion records with different weighted vector-valued objective functions.The weights are altered to account for the relative importance of IM in accordance with the structural analysis application of steel moment resisting frame(SMRF)buildings.Instead of an ordinary objective function for the matching spectrum,a novel model is introduced and compared with the conventional cost function.The results indicate that when applying the new cost function for ground motion selection,it places higher demands on structures compared to the conventional cost function.Moreover,submitting more weights to the first-mode period of structures increases engineering demand parameters.Findings demonstrate that weight factors allocated to different period ranges can successfully account for period elongation and higher mode effects.
基金National Natural Science Foundation of Hebei Province under Grant No.E2020202038the National Natural Science Foundation of China under Grant No.51778206。
文摘Input ground motions have significant impacts on the uncertainty of structural responses in time-history analysis.In this study,records were selected and scaled for the evaluation of mean structural responses according to the target spectrum.The Newmark-Hall spectrum is closely related to seismic response of short,medium and long-period structures,so it was taken as the target spectrum here.The nonlinear time-history analyses of 9-story and 20-story steel moment-resisting frame structures were carried out as examples.They represent medium and long-period buildings,respectively.Three target spectra with risk of 50%,10%and 2%probabilities for exceedance in 50 years were calculated by the average Newmark-Hall spectrum method for three ground motion sets developed in the SAC Steel Project.The predicted structural mean responses of these Newmark-Hall spectra were compared with those calculated by the average spectral acceleration method for the same record set.It is found that both methods have similar accuracy for estimating the structural mean response.However,the method proposed herein is more effective in reducing the variability of the structural responses.Also,the proposed method is more advantageous for the time-history analysis of long-period structures or structures with more severe nonlinear responses under strong seismic excitations.
基金financial support from Teesside University to support the Ph.D.programme of the first author.
文摘Traditionally,nonlinear time history analysis(NLTHA)is used to assess the performance of structures under fu-ture hazards which is necessary to develop effective disaster risk management strategies.However,this method is computationally intensive and not suitable for analyzing a large number of structures on a city-wide scale.Surrogate models offer an efficient and reliable alternative and facilitate evaluating the performance of multiple structures under different hazard scenarios.However,creating a comprehensive database for surrogate mod-elling at the city level presents challenges.To overcome this,the present study proposes meta databases and a general framework for surrogate modelling of steel structures.The dataset includes 30,000 steel moment-resisting frame buildings,representing low-rise,mid-rise and high-rise buildings,with criteria for connections,beams,and columns.Pushover analysis is performed and structural parameters are extracted,and finally,incorporating two different machine learning algorithms,random forest and Shapley additive explanations,sensitivity and explain-ability analyses of the structural parameters are performed to identify the most significant factors in designing steel moment resisting frames.The framework and databases can be used as a validated source of surrogate modelling of steel frame structures in order for disaster risk management.
基金Rearch Grant from the School of Engineering,San Francisco State University
文摘This study focuses on the comparison of the Uniform Building Code (UBC) 1997 and International Building Code (IBC) 2003 in relation to the seismic design and analysis of special steel moment resisting frame buildings (SMRF). This paper formulates a numerical study of a steel SMRF building, studied in four different situations, namely: as an office building in San Francisco; as an office building in Sacramento; as an essential facility in San Francisco, and as an essential facility in Sacramento. The analytical results of the model buildings are then compared and analyzed taking note of any significant differences. This case study explores variations in the results obtained using the two codes, particularly the design base shear and drift ratios as they relate to different locations and occupancy use. This study also proves that IBC 2003 is more stringent for the redundancy factor under design category E for the SMRF building, and drift limits for essential facilities.
基金National Natural Science Foundation of China Under Grant No. 51078075a grant from Southeast University (No. 3205000502)the financial support from the State Key Lab of Subtropical Building Science, South China University of Technology under Grant No. 2010KB05
文摘A new type of steel moment resisting frame with bottom flange friction devices (BFFDs) has been developed to provide self-centering capacity and energy dissipation, and to reduce permanent deformations under earthquakes. This paper presents a numerical simulation of self-centering beam-column connections with BFFDs, in which the gap opening/closing at the beam-column interfaces is simulated by using pairs of zero-length elements with compression-only material properties, and the energy dissipation due to friction is simulated by using truss elements with specified hysteretic behavior. In particular, the effect of the friction bolt bearing against the slotted plate in the BFFDs was modeled, so that the increase in lateral force and the loss of friction force due to the bolt bearing could be taken into account. Parallel elastic-perfectly plastic gap (ElasticPPGap) materials in the Open System for Earthquake Engineering Simulation (OpenSees) were used with predefined gaps to specify the sequence that each bolt went into the bearing and the corresponding increase in bending stiffness. The MinMax material in OpenSees is used to specify the minimum and maximum values of strains of the ElasticPPGap materials. To consider the loss of friction force due to bok bearing, a number of parallel hysteretic materials were used, and the failure of these materials in sequence simulated the gradual loss of friction force. Analysis results obtained by using the proposed numerical model are discussed and compared with the test results under cyclic loadings and the seismic loading, respectively.