As an emerging joint learning model,federated learning is a promising way to combine model parameters of different users for training and inference without collecting users’original data.However,a practical and effic...As an emerging joint learning model,federated learning is a promising way to combine model parameters of different users for training and inference without collecting users’original data.However,a practical and efficient solution has not been established in previous work due to the absence of efficient matrix computation and cryptography schemes in the privacy-preserving federated learning model,especially in partially homomorphic cryptosystems.In this paper,we propose a Practical and Efficient Privacy-preserving Federated Learning(PEPFL)framework.First,we present a lifted distributed ElGamal cryptosystem for federated learning,which can solve the multi-key problem in federated learning.Secondly,we develop a Practical Partially Single Instruction Multiple Data(PSIMD)parallelism scheme that can encode a plaintext matrix into single plaintext for encryption,improving the encryption efficiency and reducing the communication cost in partially homomorphic cryptosystem.In addition,based on the Convolutional Neural Network(CNN)and the designed cryptosystem,a novel privacy-preserving federated learning framework is designed by using Momentum Gradient Descent(MGD).Finally,we evaluate the security and performance of PEPFL.The experiment results demonstrate that the scheme is practicable,effective,and secure with low communication and computation costs.展开更多
针对多径环境下异步长短码直扩码分多址信号(long and short code direct sequence code division multiple access,LSC-DS-CDMA)伪码估计难的问题,提出一种基于张量分解和联合估计的伪码估计方法,采用重叠窗对接收信号进行分段并构建...针对多径环境下异步长短码直扩码分多址信号(long and short code direct sequence code division multiple access,LSC-DS-CDMA)伪码估计难的问题,提出一种基于张量分解和联合估计的伪码估计方法,采用重叠窗对接收信号进行分段并构建张量模型。为改善传统线性步长搜索算法结合梯度下降的方法分解因子矩阵收敛较慢的问题,提出改进的线性步长搜索算法,结合使用动量梯度下降法对各子张量进行Tucker分解得到各因子矩阵,所需的迭代次数大大减少;利用接收增益矩阵和移位相乘解决复合码的排序模糊和幅度模糊问题;利用最大似然准则联合估计复合码和多径信道后,使用梅西算法和相关运算估计每个用户的长码和短码。仿真结果表明,该方法能够有效估计多径异步LSC-DS-CDMA信号的伪码。展开更多
基金supported by the National Natural Science Foundation of China under Grant No.U19B2021the Key Research and Development Program of Shaanxi under Grant No.2020ZDLGY08-04+1 种基金the Key Technologies R&D Program of He’nan Province under Grant No.212102210084the Innovation Scientists and Technicians Troop Construction Projects of Henan Province.
文摘As an emerging joint learning model,federated learning is a promising way to combine model parameters of different users for training and inference without collecting users’original data.However,a practical and efficient solution has not been established in previous work due to the absence of efficient matrix computation and cryptography schemes in the privacy-preserving federated learning model,especially in partially homomorphic cryptosystems.In this paper,we propose a Practical and Efficient Privacy-preserving Federated Learning(PEPFL)framework.First,we present a lifted distributed ElGamal cryptosystem for federated learning,which can solve the multi-key problem in federated learning.Secondly,we develop a Practical Partially Single Instruction Multiple Data(PSIMD)parallelism scheme that can encode a plaintext matrix into single plaintext for encryption,improving the encryption efficiency and reducing the communication cost in partially homomorphic cryptosystem.In addition,based on the Convolutional Neural Network(CNN)and the designed cryptosystem,a novel privacy-preserving federated learning framework is designed by using Momentum Gradient Descent(MGD).Finally,we evaluate the security and performance of PEPFL.The experiment results demonstrate that the scheme is practicable,effective,and secure with low communication and computation costs.
文摘针对多径环境下异步长短码直扩码分多址信号(long and short code direct sequence code division multiple access,LSC-DS-CDMA)伪码估计难的问题,提出一种基于张量分解和联合估计的伪码估计方法,采用重叠窗对接收信号进行分段并构建张量模型。为改善传统线性步长搜索算法结合梯度下降的方法分解因子矩阵收敛较慢的问题,提出改进的线性步长搜索算法,结合使用动量梯度下降法对各子张量进行Tucker分解得到各因子矩阵,所需的迭代次数大大减少;利用接收增益矩阵和移位相乘解决复合码的排序模糊和幅度模糊问题;利用最大似然准则联合估计复合码和多径信道后,使用梅西算法和相关运算估计每个用户的长码和短码。仿真结果表明,该方法能够有效估计多径异步LSC-DS-CDMA信号的伪码。