This paper investigates the momentum-dependent symmetries for nonholonomic nonconservative Hamilton canonical systems. The definition and determining equations of the momentum-dependent symmetries are presented, based...This paper investigates the momentum-dependent symmetries for nonholonomic nonconservative Hamilton canonical systems. The definition and determining equations of the momentum-dependent symmetries are presented, based on the invariance of differential equations under infinitesimal transformations with respect to the generalized coordinates and generalized momentums. The structure equation and the non-Noether conserved quantities of the systems are obtained. The inverse issues associated with the momentum-dependent symmetries are discussed. Finally, an example is discussed to further illustrate the applications.展开更多
The K<SUP>?</SUP> nucleus differential elastic scattering cross section for <SUP>12</SUP>C and <SUP>40</SUP>Ca at is calculated with three momentum-dependent optical potential mode...The K<SUP>?</SUP> nucleus differential elastic scattering cross section for <SUP>12</SUP>C and <SUP>40</SUP>Ca at is calculated with three momentum-dependent optical potential models, which are density-dependent, relativistic mean field, and hybrid model, respectively. It is found that the forms of momentum-dependent optical potential models proposed by us are reasonable and gain success in the calculations and the momentum-dependent hybrid model is the best model for the K<SUP>?</SUP> nucleus elastic scattering.展开更多
Within the isospin-dependent quantum molecular dynamics model, we investigate the nuclear collective flows produced in semi-central 197 Au+197 Au collisions at intermediate energies. The neutron proton differential f...Within the isospin-dependent quantum molecular dynamics model, we investigate the nuclear collective flows produced in semi-central 197 Au+197 Au collisions at intermediate energies. The neutron proton differential flows and difference of neutron proton collective flows are sensitive to the momentum-dependent symmetry potential. This sensitivity is less affected by both the isoscalar part of nuclear equation of state and in-medium nucleon- nucleon cross sections. Moreover, this sensitivity becomes pronounced with increasing the rapidity cut.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 10372053) and the Natural Science Foundation of Henan Province, China (Grant Nos 0311011400 and 0511022200) and the State Key Laboratory of Scientific and Engineering Computing, Chinese Academy of Sciences.
文摘This paper investigates the momentum-dependent symmetries for nonholonomic nonconservative Hamilton canonical systems. The definition and determining equations of the momentum-dependent symmetries are presented, based on the invariance of differential equations under infinitesimal transformations with respect to the generalized coordinates and generalized momentums. The structure equation and the non-Noether conserved quantities of the systems are obtained. The inverse issues associated with the momentum-dependent symmetries are discussed. Finally, an example is discussed to further illustrate the applications.
文摘The K<SUP>?</SUP> nucleus differential elastic scattering cross section for <SUP>12</SUP>C and <SUP>40</SUP>Ca at is calculated with three momentum-dependent optical potential models, which are density-dependent, relativistic mean field, and hybrid model, respectively. It is found that the forms of momentum-dependent optical potential models proposed by us are reasonable and gain success in the calculations and the momentum-dependent hybrid model is the best model for the K<SUP>?</SUP> nucleus elastic scattering.
基金Supported by the National Natural Science Foundation of China under Grant No 11505150the Yuncheng University Research Project under Grant No YQ-2014014the China Postdoctoral Science Foundation under Grant No 2015M582730
文摘Within the isospin-dependent quantum molecular dynamics model, we investigate the nuclear collective flows produced in semi-central 197 Au+197 Au collisions at intermediate energies. The neutron proton differential flows and difference of neutron proton collective flows are sensitive to the momentum-dependent symmetry potential. This sensitivity is less affected by both the isoscalar part of nuclear equation of state and in-medium nucleon- nucleon cross sections. Moreover, this sensitivity becomes pronounced with increasing the rapidity cut.