An electron vortex beam(EVB) carrying orbital angular momentum(OAM) plays a key role in a series of fundamental scientific researches, such as chiral energy-loss spectroscopy and magnetic dichroism spectroscopy. So fa...An electron vortex beam(EVB) carrying orbital angular momentum(OAM) plays a key role in a series of fundamental scientific researches, such as chiral energy-loss spectroscopy and magnetic dichroism spectroscopy. So far, almost all the experimentally created EVBs manifest isotropic doughnut intensity patterns. Here, based on the correlation between local divergence angle of electron beam and phase gradient along azimuthal direction, we show that free electrons can be tailored to EVBs with customizable intensity patterns independent of the carried OAM. As proof-of-concept, by using computer generated hologram and designing phase masks to shape the incident free electrons in the transmission electron microscope, three structured EVBs carrying identical OAM are tailored to exhibit completely different intensity patterns. Furthermore, through the modal decomposition, we quantitatively investigate their OAM spectral distributions and reveal that structured EVBs present a superposition of a series of different eigenstates induced by the locally varied geometries. These results not only generalize the concept of EVB, but also demonstrate an extra highly controllable degree of freedom for electron beam manipulation in addition to OAM.展开更多
To explore the effect of non-uniform polarization on orbital angular momentum(OAM) in anisotropic medium, in this work investigated are the evolution of the spiral spectra and OAM densities of non-uniformly polarized ...To explore the effect of non-uniform polarization on orbital angular momentum(OAM) in anisotropic medium, in this work investigated are the evolution of the spiral spectra and OAM densities of non-uniformly polarized vortex(NUPV)beams in uniaxial crystals propagating orthogonal to the optical axis, and also the case of uniformly polarized vortex(UPV)beams with left-handed elliptical polarization. In the input plane, the NUPV beams present their spiral spectra of m-mode concentrated at m = l ± 1 modes rather than m = l mode, and reveal the relation among topological charge l, mode of spiral spectra m and the power weight value Rmexpressed by l=∑^(∞)_(m)=-∞Rm. is still satisfied for UPV beams in uniaxially anisotropic crystals, whereas for NUPV beams their relations are no longer valid owing to non-uniform polarization. Furthermore, the analysis indicates that the asymmetrical distribution of power weight of spiral spectra and the non-zero value in the sum of longitudinal OAM densities originate from the initial non-uniform polarization and anisotropy in uniaxial crystals rather than topological charges. In addition, the relation between spiral spectrum and longitudinal OAM density is numerically discussed. This work may provide an avenue for OAM-based communications,optical metrology, and imaging by varying the initial non-uniform polarization.展开更多
The extreme ultraviolet(XUV)light beam carrying orbital angular momentum(OAM)can be produced via high-order harmonic generation(HHG)due to the interaction of an intense vortex infrared laser and a gas medium.Here we s...The extreme ultraviolet(XUV)light beam carrying orbital angular momentum(OAM)can be produced via high-order harmonic generation(HHG)due to the interaction of an intense vortex infrared laser and a gas medium.Here we show that the OAM spectrum of vortex HHG can be readily tailored by varying the radial node(from 0 to 2)in the driving laser consisting of two mixed Laguerre-Gaussian(LG)beams.We find that due to the change in spatial profile of HHG,the distribution range of the OAM spectrum can be broadened and its shape can be modified by increasing the radial node.We also show that the OAM mode range becomes much wider and its distribution shape becomes more symmetric when the harmonic order is increased from the plateau to the cutoff when the driving laser has the nonzero radial nodes.Through the map of coherence length and the evolution of harmonic field in the medium,we reveal that the favorable off-axis phase-matching conditions are greatly modified due to the change of intensity and phase distributions of driving laser with the radial node.We anticipate this work to stimulate some interests in generating the XUV vortex beam with tunable OAM spectrum through the gaseous HHG process achieved by manipulating the mode properties of the driving laser beam.展开更多
We investigated the spin splitting of vortex beam on the surface of biaxial natural hyperbolic materials(NHMs)rotated by an angle with respect to the incident plane. An obvious asymmetry of spatial shifts produced by ...We investigated the spin splitting of vortex beam on the surface of biaxial natural hyperbolic materials(NHMs)rotated by an angle with respect to the incident plane. An obvious asymmetry of spatial shifts produced by the left-handed circularly(LCP) component and right-handed circularly polarized(RCP) component is exhibited. We derived the analytical expression for in-and out-of-plane spatial shifts for each spin component of the vortex beam. The orientation angle of the optical axis plays a key role in the spin splitting between the two spin components, which can be reflected in the simple expressions for spatial shifts without the rotation angle. Based on an α-MoO_(3) biaxial NHM, the spatial shifts of the two spin components with the topological charge were investigated. As the topological charge increases, the spatial shifts also increase;in addition, a tiny spatial shift close to zero can be obtained if we control the incident frequency or the polarization of the reflected beams. It can also be concluded that the maximum of the spin splitting results from the LCP component at p-incidence and the RCP component at s-incidence in the RB-Ⅱ hyperbolic frequency band. The effect of the incident angle and the thickness of the α-MoO_(3) film on spin splitting is also considered. These results can be used for manipulating infrared radiation and optical detection.展开更多
This paper investigates a new vortex wave imaging approach to improve the imaging quality of small metal targets of size less than 1.5 mm.Antennas with different spiral phase plates are designed to efficiently transmi...This paper investigates a new vortex wave imaging approach to improve the imaging quality of small metal targets of size less than 1.5 mm.Antennas with different spiral phase plates are designed to efficiently transmit vortex beams with orbital angular momentums(OAMs).By analyzing the OAM spectrum of the target,it was discovered that the predominant reflection contains a particular OAM mode that carries abundant azimuthal information.This can be explained by the OAM selectivity of the target and the guidance of the vortex transmitting beam.A simple reflection vortex imaging system was designed to capture the phase information.Measurement results show that the high image contrast reaches 14.9%,which is twice as high as that of the imaging without OAM.Both of simulations and experiments demonstrate that the vortex phase imaging approach proposed in this paper can effectively improve the imaging quality at 80 GHz.This approach is suitable for other millimeter wave imaging systems and is helpful to improve the resolution in anti-terrorism security checks.展开更多
Orbital angular momentum(OAM)holography has become a promising technique in information encryption,data storage and opto-electronic computing,owing to the infinite topological charge of one single OAM mode and the ort...Orbital angular momentum(OAM)holography has become a promising technique in information encryption,data storage and opto-electronic computing,owing to the infinite topological charge of one single OAM mode and the orthogonality of different OAM modes.In this paper,we propose a novel OAM hologram generation method based on a densely connected U-net(DCU),where the densely connected convolution blocks(DCB)replace the convolution blocks of the U-net.Importantly,the reconstruction process of the OAM hologram is integrated into DCU as its output layer,so as to eliminate the requirement to prepare training data for the OAM hologram,which is required by conventional neural networks through an iterative algorithm.The experimental and simulation results show that the OAM hologram can rapidly be generated with the well-trained DCU,and the reconstructed image's quality from the generated OAM hologram is significantly improved in comparison with those from the Gerchberg-Saxton generation method,the Gerchberg-Saxton based generation method and the U-net method.In addition,a 10-bit OAM multiplexing hologram scheme is numerically demonstrated to have a high capacity with OAM hologram.展开更多
We analyze the properties of a focused Laguerre–Gaussian(LG)beam propagating through anisotropic ocean turbulence based on the Huygens–Fresnel principle.Under the Rytov approximation theory,we derive the analytical ...We analyze the properties of a focused Laguerre–Gaussian(LG)beam propagating through anisotropic ocean turbulence based on the Huygens–Fresnel principle.Under the Rytov approximation theory,we derive the analytical formula of the channel capacity of the focused LG beam in the anisotropic ocean turbulence,and analyze the relationship between the capacity and the light source parameters as well as the turbulent ocean parameters.It is found that the focusing mirror can greatly enhance the channel capacity of the system at the geometric focal plane in oceanic turbulence.The results also demonstrate that the communication link can obtain high channel capacity by adopting longer beam wavelength,greater initial beam waist radius,and larger number of transmission channels.Further,the capacity of the system increases with the decrease of the mean squared temperature dissipation rate,temperature-salinity contribution ratio and turbulence outer scale factor,and with the increase of the kinetic energy dissipation rate per unit mass of fluid,turbulence inner scale factor and anisotropy factor.Compared to a Hankel–Bessel beam with diffraction-free characteristics and unfocused LG beam,the focused LG beam shows superior anti-turbulence interference properties,which provide a theoretical reference for research and development of underwater optical communication links using focused LG beams.展开更多
Orbital angular momentum(OAM), as a new degree of freedom, has recently been applied in holography technology.Due to the infinite helical mode index of OAM mode, a large number of holographic images can be reconstruct...Orbital angular momentum(OAM), as a new degree of freedom, has recently been applied in holography technology.Due to the infinite helical mode index of OAM mode, a large number of holographic images can be reconstructed from an OAM-multiplexing hologram. However, the traditional design of an OAM hologram is constrained by the helical mode index of the selected OAM mode, for a larger helical mode index OAM mode has a bigger sampling distance, and the crosstalk is produced for different sampling distances for different OAM modes. In this paper, we present the design of the OAM hologram based on a Bessel–Gaussian beam, which is non-diffractive and has a self-healing property during its propagation. The Fourier transform of the Bessel–Gaussian beam is the perfect vortex mode that has the fixed ring radius for different OAM modes. The results of simulation and experiment have demonstrated the feasibility of the generation of the OAM hologram with the Bessel–Gaussian beam. The quality of the reconstructed holographic image is increased, and the security is enhanced. Additionally, the anti-interference property is improved owing to its self-healing property of the Bessel-OAM holography.展开更多
The light's orbital angular momentum (OAM) is a consequence of the spiral flow of the electromagnetic energy. In this paper, an analysis of light beams with OAM used for free space optics (FSO) is conducted. The ...The light's orbital angular momentum (OAM) is a consequence of the spiral flow of the electromagnetic energy. In this paper, an analysis of light beams with OAM used for free space optics (FSO) is conducted. The basic description and conception of light's OAM are reviewed. Both encoding information into OAM states of single light beam and encoding information into spatial structure of the mixed optical vortex with OAM are discussed, and feasibility to improve the FSO's performance of security and obstruction of line of sight is examined.展开更多
We investigate the incoherent beams with two orthogonal polarizations in nonlocal nonlinear media, one of which is a fundamental Gaussian beam and the other is spiraling elliptic Hermite–Gaussian beam carrying the or...We investigate the incoherent beams with two orthogonal polarizations in nonlocal nonlinear media, one of which is a fundamental Gaussian beam and the other is spiraling elliptic Hermite–Gaussian beam carrying the orbital angular momentum(OAM).Using the variational approach, we obtain the critical power and the critical OAM required for the vector spiraling elliptic Hermite–Gaussian solitons.In the strong nonlocality region, two components of the vector beam contribute to the nonlinear refractive index in a linear manner by the sum of their respective power.The nonlinear refractive index exhibits a circularly symmetrical profile in despite of the elliptic shapes for spiraling Hermite–Gaussian beams.We find that in the strong nonlocality region, the critical power and the rotational velocity are the same regardless of the relative ratio of the constituent powers.The nonlinear refractive index loses its circular symmetry in weak nonlocality region, and the nonlinear coupling effect is observed.Due to the radiation of the OAM, the damping of the rotation is predicted, and can be suppressed by decreasing the proportion of the spiraling elliptic component of the vector beam.展开更多
In this article, we investigate the nonparaxial propagation properties of the chirped Airy Gaussian vortex(CAiGV)beams in uniaxial crystals orthogonal to the optical axis analytically and numerically. We discuss how...In this article, we investigate the nonparaxial propagation properties of the chirped Airy Gaussian vortex(CAiGV)beams in uniaxial crystals orthogonal to the optical axis analytically and numerically. We discuss how the linear chirp parameters, the quadratic chirp parameters, and the Gaussian factors influence the nonparaxial propagation dynamics of the CAiGV beams. The intensity, the energy flow, the beam center, and the angular momentum of the CAiGV beams are deeply investigated. It is shown that the Gaussian factors have a great effect on the intensity and the centroid positions of the CAiGV beams. With the Gaussian factors increasing, the intensity of CAiGV beams decreases rapidly. The main lobes of the transverse intensity distribution of the CAiGV beams are similar to triangles.展开更多
基金This work is supported in part by the Key Research and Development Program from Ministry of Science and Technology of China(2022YFA1205000)National Natural Science Foundation of China(12274217 and 62105142)+1 种基金Natural Science Foundation of Jiangsu Province(BK20220068 and BK20212004)Fundamental Research Funds for Central Universities.
文摘An electron vortex beam(EVB) carrying orbital angular momentum(OAM) plays a key role in a series of fundamental scientific researches, such as chiral energy-loss spectroscopy and magnetic dichroism spectroscopy. So far, almost all the experimentally created EVBs manifest isotropic doughnut intensity patterns. Here, based on the correlation between local divergence angle of electron beam and phase gradient along azimuthal direction, we show that free electrons can be tailored to EVBs with customizable intensity patterns independent of the carried OAM. As proof-of-concept, by using computer generated hologram and designing phase masks to shape the incident free electrons in the transmission electron microscope, three structured EVBs carrying identical OAM are tailored to exhibit completely different intensity patterns. Furthermore, through the modal decomposition, we quantitatively investigate their OAM spectral distributions and reveal that structured EVBs present a superposition of a series of different eigenstates induced by the locally varied geometries. These results not only generalize the concept of EVB, but also demonstrate an extra highly controllable degree of freedom for electron beam manipulation in addition to OAM.
基金supported by the Science and Technology Program of Sichuan Province, China (Grant No. 23NSFSC1097)。
文摘To explore the effect of non-uniform polarization on orbital angular momentum(OAM) in anisotropic medium, in this work investigated are the evolution of the spiral spectra and OAM densities of non-uniformly polarized vortex(NUPV)beams in uniaxial crystals propagating orthogonal to the optical axis, and also the case of uniformly polarized vortex(UPV)beams with left-handed elliptical polarization. In the input plane, the NUPV beams present their spiral spectra of m-mode concentrated at m = l ± 1 modes rather than m = l mode, and reveal the relation among topological charge l, mode of spiral spectra m and the power weight value Rmexpressed by l=∑^(∞)_(m)=-∞Rm. is still satisfied for UPV beams in uniaxially anisotropic crystals, whereas for NUPV beams their relations are no longer valid owing to non-uniform polarization. Furthermore, the analysis indicates that the asymmetrical distribution of power weight of spiral spectra and the non-zero value in the sum of longitudinal OAM densities originate from the initial non-uniform polarization and anisotropy in uniaxial crystals rather than topological charges. In addition, the relation between spiral spectrum and longitudinal OAM density is numerically discussed. This work may provide an avenue for OAM-based communications,optical metrology, and imaging by varying the initial non-uniform polarization.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12274230,91950102,and 11834004)the Funding of Nanjing University of Science and Technology (Grant No.TSXK2022D005)。
文摘The extreme ultraviolet(XUV)light beam carrying orbital angular momentum(OAM)can be produced via high-order harmonic generation(HHG)due to the interaction of an intense vortex infrared laser and a gas medium.Here we show that the OAM spectrum of vortex HHG can be readily tailored by varying the radial node(from 0 to 2)in the driving laser consisting of two mixed Laguerre-Gaussian(LG)beams.We find that due to the change in spatial profile of HHG,the distribution range of the OAM spectrum can be broadened and its shape can be modified by increasing the radial node.We also show that the OAM mode range becomes much wider and its distribution shape becomes more symmetric when the harmonic order is increased from the plateau to the cutoff when the driving laser has the nonzero radial nodes.Through the map of coherence length and the evolution of harmonic field in the medium,we reveal that the favorable off-axis phase-matching conditions are greatly modified due to the change of intensity and phase distributions of driving laser with the radial node.We anticipate this work to stimulate some interests in generating the XUV vortex beam with tunable OAM spectrum through the gaseous HHG process achieved by manipulating the mode properties of the driving laser beam.
基金Project supported by the Natural Science Foundation of Heilongjiang Province of China (Grant No. LH2022F041)。
文摘We investigated the spin splitting of vortex beam on the surface of biaxial natural hyperbolic materials(NHMs)rotated by an angle with respect to the incident plane. An obvious asymmetry of spatial shifts produced by the left-handed circularly(LCP) component and right-handed circularly polarized(RCP) component is exhibited. We derived the analytical expression for in-and out-of-plane spatial shifts for each spin component of the vortex beam. The orientation angle of the optical axis plays a key role in the spin splitting between the two spin components, which can be reflected in the simple expressions for spatial shifts without the rotation angle. Based on an α-MoO_(3) biaxial NHM, the spatial shifts of the two spin components with the topological charge were investigated. As the topological charge increases, the spatial shifts also increase;in addition, a tiny spatial shift close to zero can be obtained if we control the incident frequency or the polarization of the reflected beams. It can also be concluded that the maximum of the spin splitting results from the LCP component at p-incidence and the RCP component at s-incidence in the RB-Ⅱ hyperbolic frequency band. The effect of the incident angle and the thickness of the α-MoO_(3) film on spin splitting is also considered. These results can be used for manipulating infrared radiation and optical detection.
基金Science,Technology and Innovation Project of Xiongan New Area (Grant No.2022XAGG0181)LiaoNing Revitalization Talents Program (Grant No.XLYC2007074)+1 种基金Shenyang Young and Middle-aged Science and Technology Innovation Talent Support Program (Grant No.RC220523)Natural Science Foundation of Liaoning Province of China (Grant Nos.2022-YGJC-03 and 2022-MS-034)to provide fund for conducting experiments。
文摘This paper investigates a new vortex wave imaging approach to improve the imaging quality of small metal targets of size less than 1.5 mm.Antennas with different spiral phase plates are designed to efficiently transmit vortex beams with orbital angular momentums(OAMs).By analyzing the OAM spectrum of the target,it was discovered that the predominant reflection contains a particular OAM mode that carries abundant azimuthal information.This can be explained by the OAM selectivity of the target and the guidance of the vortex transmitting beam.A simple reflection vortex imaging system was designed to capture the phase information.Measurement results show that the high image contrast reaches 14.9%,which is twice as high as that of the imaging without OAM.Both of simulations and experiments demonstrate that the vortex phase imaging approach proposed in this paper can effectively improve the imaging quality at 80 GHz.This approach is suitable for other millimeter wave imaging systems and is helpful to improve the resolution in anti-terrorism security checks.
基金supported by the National Natural Science Foundation of China(Grant Nos.62375140 and 61871234)the Open Research Fund of National Laboratory of Solid State Microstructures(Grant No.M36055).
文摘Orbital angular momentum(OAM)holography has become a promising technique in information encryption,data storage and opto-electronic computing,owing to the infinite topological charge of one single OAM mode and the orthogonality of different OAM modes.In this paper,we propose a novel OAM hologram generation method based on a densely connected U-net(DCU),where the densely connected convolution blocks(DCB)replace the convolution blocks of the U-net.Importantly,the reconstruction process of the OAM hologram is integrated into DCU as its output layer,so as to eliminate the requirement to prepare training data for the OAM hologram,which is required by conventional neural networks through an iterative algorithm.The experimental and simulation results show that the OAM hologram can rapidly be generated with the well-trained DCU,and the reconstructed image's quality from the generated OAM hologram is significantly improved in comparison with those from the Gerchberg-Saxton generation method,the Gerchberg-Saxton based generation method and the U-net method.In addition,a 10-bit OAM multiplexing hologram scheme is numerically demonstrated to have a high capacity with OAM hologram.
基金This work was supported by the Science and Technology Innovation Training Program of Nanjing University of Posts and Telecommunications(Grant No.CXXZD2023080)the National Natural Science Foundation of China(Grant Nos.61871234 and 62001249)+1 种基金the Natural Science Foundation of Nanjing University of Posts and Telecommunications(Grant No.NY222133)the Open Research Fund of National Laboratory of Solid State Microstructures(Grant No.M36055).
文摘We analyze the properties of a focused Laguerre–Gaussian(LG)beam propagating through anisotropic ocean turbulence based on the Huygens–Fresnel principle.Under the Rytov approximation theory,we derive the analytical formula of the channel capacity of the focused LG beam in the anisotropic ocean turbulence,and analyze the relationship between the capacity and the light source parameters as well as the turbulent ocean parameters.It is found that the focusing mirror can greatly enhance the channel capacity of the system at the geometric focal plane in oceanic turbulence.The results also demonstrate that the communication link can obtain high channel capacity by adopting longer beam wavelength,greater initial beam waist radius,and larger number of transmission channels.Further,the capacity of the system increases with the decrease of the mean squared temperature dissipation rate,temperature-salinity contribution ratio and turbulence outer scale factor,and with the increase of the kinetic energy dissipation rate per unit mass of fluid,turbulence inner scale factor and anisotropy factor.Compared to a Hankel–Bessel beam with diffraction-free characteristics and unfocused LG beam,the focused LG beam shows superior anti-turbulence interference properties,which provide a theoretical reference for research and development of underwater optical communication links using focused LG beams.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.62375140 and 62001249)the Open Research Fund of the National Laboratory of Solid State Microstructures (Grant No.M36055)。
文摘Orbital angular momentum(OAM), as a new degree of freedom, has recently been applied in holography technology.Due to the infinite helical mode index of OAM mode, a large number of holographic images can be reconstructed from an OAM-multiplexing hologram. However, the traditional design of an OAM hologram is constrained by the helical mode index of the selected OAM mode, for a larger helical mode index OAM mode has a bigger sampling distance, and the crosstalk is produced for different sampling distances for different OAM modes. In this paper, we present the design of the OAM hologram based on a Bessel–Gaussian beam, which is non-diffractive and has a self-healing property during its propagation. The Fourier transform of the Bessel–Gaussian beam is the perfect vortex mode that has the fixed ring radius for different OAM modes. The results of simulation and experiment have demonstrated the feasibility of the generation of the OAM hologram with the Bessel–Gaussian beam. The quality of the reconstructed holographic image is increased, and the security is enhanced. Additionally, the anti-interference property is improved owing to its self-healing property of the Bessel-OAM holography.
文摘The light's orbital angular momentum (OAM) is a consequence of the spiral flow of the electromagnetic energy. In this paper, an analysis of light beams with OAM used for free space optics (FSO) is conducted. The basic description and conception of light's OAM are reviewed. Both encoding information into OAM states of single light beam and encoding information into spatial structure of the mixed optical vortex with OAM are discussed, and feasibility to improve the FSO's performance of security and obstruction of line of sight is examined.
基金Project supported by the National Natural Science Foundation of China(Grant No.11604199)the China Scholarship Council(Grant No.201708410236)
文摘We investigate the incoherent beams with two orthogonal polarizations in nonlocal nonlinear media, one of which is a fundamental Gaussian beam and the other is spiraling elliptic Hermite–Gaussian beam carrying the orbital angular momentum(OAM).Using the variational approach, we obtain the critical power and the critical OAM required for the vector spiraling elliptic Hermite–Gaussian solitons.In the strong nonlocality region, two components of the vector beam contribute to the nonlinear refractive index in a linear manner by the sum of their respective power.The nonlinear refractive index exhibits a circularly symmetrical profile in despite of the elliptic shapes for spiraling Hermite–Gaussian beams.We find that in the strong nonlocality region, the critical power and the rotational velocity are the same regardless of the relative ratio of the constituent powers.The nonlinear refractive index loses its circular symmetry in weak nonlocality region, and the nonlinear coupling effect is observed.Due to the radiation of the OAM, the damping of the rotation is predicted, and can be suppressed by decreasing the proportion of the spiraling elliptic component of the vector beam.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11775083 and 11374108)
文摘In this article, we investigate the nonparaxial propagation properties of the chirped Airy Gaussian vortex(CAiGV)beams in uniaxial crystals orthogonal to the optical axis analytically and numerically. We discuss how the linear chirp parameters, the quadratic chirp parameters, and the Gaussian factors influence the nonparaxial propagation dynamics of the CAiGV beams. The intensity, the energy flow, the beam center, and the angular momentum of the CAiGV beams are deeply investigated. It is shown that the Gaussian factors have a great effect on the intensity and the centroid positions of the CAiGV beams. With the Gaussian factors increasing, the intensity of CAiGV beams decreases rapidly. The main lobes of the transverse intensity distribution of the CAiGV beams are similar to triangles.