期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
U-Th-Pb monazite and Sm-Nd dating of high-grade rocks from the Grove Mountains, East Antarctica: further evidence for a Pan-African-aged monometamorphic terrane
1
作者 LIU Xiaochun LING Xiaoxiao JAHN Bor-ming 《Advances in Polar Science》 2018年第2期108-117,共10页
The Grove Mountains, 400 km south of the Chinese Antarctic Zhongshan Station, are an inland continuation of the Pan-African-aged (i.e., Late Neoproterozoic/Cambrian) Prydz Belt, East Antarctica. In this paper we car... The Grove Mountains, 400 km south of the Chinese Antarctic Zhongshan Station, are an inland continuation of the Pan-African-aged (i.e., Late Neoproterozoic/Cambrian) Prydz Belt, East Antarctica. In this paper we carried out a combined U-Th-Pb monazite and Sm-Nd mineral-whole-rock dating on para- and orthogneisses from bedrock in the Grove Mountains. U-Th-Pb monazite dating of a cordierite-bearing pelitic paragneiss yields ages of 523 ? 4 Ma for the cores and 508 ? 6 Ma for the rims. Sm-Nd mineral-whole-rock isotopic analyses yield isochron ages of 536 ? 3 Ma for a coarse-grained felsic orthogneiss and 507 ? 30 Ma for a fine-grained quartzofeldspathic paragneiss. Combined with previously published age data in the Grove Mountains and adjacent areas, the older age of ~530 Ma is interpreted as the time of regional medium- to low-pressure granulite-facies metamorphism, and the younger age of ~510 Ma as the cooling age of the granulite terrane. The absence of evidence for a Grenville-aged (i.e., Late Mesoproterozoic/Early Neoproterozoic) metamorphic event indicates that the Grove Mountains have experienced only a single metamorphic cycle, i.e., Pan-African-aged, which distinguishes them from other polymetamorphic terranes in the Prydz Belt. This will provide important constraints on the controversial nature of the Prydz Belt. 展开更多
关键词 u-th-pb monazite dating Sm-Nd mineral-whole-rock dating Pan-African-aged Grove Mountains East Antarctica
下载PDF
Geochemistry, Monazite U–Pb Dating, and Li–Nd Isotopes of the Madi Rare Metal Granite in the Northeastern Part of the North China Craton
2
作者 HOU Jianglong JIANG Biao DAI Hongzhang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2019年第4期901-911,共11页
The Madi rare metal granite is a complex massif,which contains a variety of rare metals,such as Nb,Ta,Li,and Be.In this paper,the geochemical characteristics of the granite were obtained by multi-collector inductively... The Madi rare metal granite is a complex massif,which contains a variety of rare metals,such as Nb,Ta,Li,and Be.In this paper,the geochemical characteristics of the granite were obtained by multi-collector inductively coupled mass spectrometry(MC-ICP-MS).The precise crystalline age of the granite was obtained from monazite U-Pb dating,and the source of the granite was determined using Li-Nd isotopes.The Madi rare metal granite is a high-K(calc-alkaline),peraluminous,S-type granite.The U-Pb monazite age indicates that the crystalline age of the granite is 175.6 Ma,which is Early Jurassic.The granite is characterized by a relatively wide range ofδ7 Li values(+2.99‰to+5.83‰)and high lithium concentrations(181 ppm to 1022 ppm).The lithium isotopic composition of the granite does not significantly correlate with the degree of magmatic differentiation.An insignificant amount of lithium isotope fractionation occurred during the granitic differentiation.The lithium isotopic composition of the granite significantly differs from that of the wall rock,but it is very similar to that of a primitive mantle peridotite xenolith(meanδ7 Li value+3.5‰).The plot of Li concentration versusδ7 Li indicates that the Li isotopic composition of the granite is similar to that of island arc lavas.Based on the above-described evidence,the granite was mainly derived from the crust,but it was contaminated by a deep granitic magma. 展开更多
关键词 GEOCHEMISTRY U-Pb monazite age Li-Nd isotopes crystallization age magmatic source Madi rare metal granite
下载PDF
Multistage mineralization in the Haoyaoerhudong gold deposit, Central Asian Orogenic Belt: Constraints from the sedimentary-diagenetic and hydrothermal sulfides and gold 被引量:2
3
作者 Hai-Dong Zhang Jian-Chao Liu Mostafa Fayek 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第2期587-604,共18页
The Central Asian Orogenic Belt,as one of world-class gold economic belts,preserves a number of giant,large black shale-hosted gold deposits,while it is still debated for origin of sulfides and gold mainly due to lack... The Central Asian Orogenic Belt,as one of world-class gold economic belts,preserves a number of giant,large black shale-hosted gold deposits,while it is still debated for origin of sulfides and gold mainly due to lack of identification for multiple stages of sulfides.The Haoyaoerhudong gold deposit is hosted in a sequence of Mesoproterozoic carbonaceous and pyritic slate,phyllite,and schist that form a tight syncline along the north margin of the North China Craton.Detailed petrography of the host rocks and mineralization have defined five stages of pyrites.The earliest form of pyrite(Py_(1))occurs as fine-grained dispersed pyrite in black carbonaceous slate and medium-to coarse-grained disseminated pyrite in pyrite-rich layers,contains relative low gold and high arsenic content,indicating a syn-sedimentary or diagenetic in origin.Stage Ⅱ pyrite(Py_(2))occurs with garnet and quartz inclusions and Py_(3) occurs as pyrite veins,contains higher gold and lower As content,and are interpreted to have formed from the dissolution-reprecipitation of Py_(1) during the peak metamorphism or post-peak metamorphism.Stage Ⅳ pyrite(Py_(4))from the pyrite-quartz veins crosscut the metamorphic garnet,contains the highest gold concentrations and other trace elements,and is considered to have formed post-peak metamorphism.Abundant native gold,electrum,and maldonite occur as inclusions within Py_(4) and monazite and in fractures that crosscut garnet.While,Py_(5) with typical remobilized feature is thought to be a product of melting of former pyrites(Py_(1) to Py_(4))triggered by the large-scale Hercynian magmatism.The sedimentary/diagenetic Py_(1) have δ^(34)S values that range from +12.4‰to +16.2‰.Later generations of sulfides,including Py_(2) to Py_(5),and Ccp_(2) to Ccp_(3),have δ^(34)S values from +9.5‰to +12.7‰.Monazite with maldonite inclusions from quartz-pyrite veins yielded an intercept age of 341.3±6.6 Ma,while coarse grained monazite associated biotite along fractures in the reefs yielded an intercept age of 254.6±8.2 Ma.The paragenetic,textural,chemical,and isotopic data suggest three distinct gold producing episodes at Haoyaoerhudong gold deposit.Gold and arsenic were clearly initially concentrated in organic muds,and enriched along the structures of diagenetic arsenic-rich pyrite.Subsequently,accompanying metamorphism and deformation,gold was liberated from the dissolution of diagenetic pyrites to form the pyrite veins.Finally,accompanying transformation of pyrite into pyrrhotite,gold was released into the metamorphic fluids to become concentrated as native gold,electrum,and maldonite in pyrite-quart veins.Monazite with age of 341 Ma from quartz-pyrite veins suggests that the third major gold mineralizing event in Haoyaoerhudong occurred before the Hercynian magmatism,suggesting that the Haoyaoerhudong deposit is a typical orogenic gold deposit rather than intrusion-related deposit. 展开更多
关键词 Multistage gold mineralization Stage pyrites monazite U-Pb age In-suite trace elements Black shale
下载PDF
Mineralogy and geochemistry of Nb-,Ta-,Sn-,U-,Th-,and Zr-bearing granitic rocks from Abu Rusheid shear zones,South Eastern Desert,Egypt 被引量:2
4
作者 Ali M.A. Lentz D.R. Hall D.C. 《Chinese Journal Of Geochemistry》 EI CAS 2011年第2期226-247,共22页
Granite-hosted,Nb-,Ta-,Sn-,U-,Th-,and Zr(Hf)-bearing mineralization from the Abu Rusheid shear zones occurs about 97 km southwest of the town of Marsa Alam,South Eastern Desert,Egypt.The SSE-trending brittle-ductile A... Granite-hosted,Nb-,Ta-,Sn-,U-,Th-,and Zr(Hf)-bearing mineralization from the Abu Rusheid shear zones occurs about 97 km southwest of the town of Marsa Alam,South Eastern Desert,Egypt.The SSE-trending brittle-ductile Abu Rusheid shear zones crosscut the peralkalic granitic gneisses and cataclastic to mylonitic rocks(mylonite,protomlyonite,and ultramylonite).The northern shear zone varies in width from 1 to 3 m with a strike length of >500 m,and the southern shear zone is 0.5 to 8 m wide and >1 km long.These shear zones locally host less altered lamprophyre and locally sheared granitic aplite-pegmatite dykes.The rare-metal minerals,identified from the peralkalic granitic gneisses and cataclastic to mylonitic rocks are associated with muscovite,chlorite,quartz,fluorite,pyrite,magnetite,and rare biotite that are restricted to the Abu Rusheid shear zones;these are columbite-tantalite and pyrochlore(var.betafite) in the northern shear zone and ferrocolumbite in the southern shear zone.Cassiterite occurs as inclusions in the columbite-tantalite minerals.U-and Th-minerals(uraninite,thorite,uranothorite,ishikawaite,and cheralite) and Hf-rich zircon coexist.Magmatic(?) zircon contains numerous inclusions of rutile,fluorite,U-Th and REE minerals,such as uranothorite,cheralite,monazite,and xenotime.Compositional variations in Ta/(Ta+Nb) and Mn/(Mn+Fe) in columbite range from 0.07-0.42 and 0.04-0.33,respectively,and Hf contents in zircon from 1.92-6.46 of the two mineralized shear zones reflect the extreme degree of magmatic fractionation.Four samples of peralkalic granitic gneisses and cataclastic to mylonitic rocks from the southern shear zone have very low TiO2(0.02 wt%-0.04 wt%),Sr [(15-20)×10-6],and Ba [(47-78)×10-6],with high Fe2O3T(0.94 wt%-1.99 wt%),CaO(0.14 wt%-1.16 wt%),alkalis(9.2 wt%-10.1 wt%),Rb [(369-805)×10-6],Zr [(1033-2261)×10-6],Nb [(371-913)×10-6],U [(51-108)×10-6],Th [(36-110)×10-6],Ta [(38-108)×10-6],Pb [(39-364)×10-6],Zn [(21-424)×10-6],Y [(8-304)×10-6],Hf [(29-157)×10-6],and ∑REE [(64-304)×10-6],especially HREE [(46-167)×10-6].Three samples from the northern shear zone also have very low TiO2(0.03 wt%),Sr [(11-16)×10-6],and Ba [(38-47)×10-6],with high Fe2O3T(1.97 wt%-2.91 wt%),CaO(0.49 wt%-1.01 wt%),alkalis(7.2 wt%-8.3 wt%),Rb [(932-978)×10-6],Zr [(1707-1953)×10-6],Nb [(853-981)×10-6],Ta [(100-112)×10-6],U [(120-752)×10-6],Th [(121-164)×10-6],Pb [(260-2198)×10-6],Zn [(483-1140)×10-6],Y [(8-304)×10-6],Hf [(67-106)×10-6],and ∑REE [(110-231)×10-6],especially HREE [(91-177)×10-6].The very high Rb/Sr(57.5-88.9),and low Zr/Hf(16.9-25.6),Nb/Ta(7.7-9.8),and Th/U(0.21-1.01) are consistent with very frac-tionated fluorine-bearing granitic rocks that were altered and sheared.The field evidence,textural relations,and compositions of the ore minerals suggest that the main mineralizing event was magmatic(629+/-5 Ma,CHIME monazite),with later hydrothermal alteration and local remobilization of the high-field-strength elements. 展开更多
关键词 uranium thorium zircon columbite-tantalite fluorite monazite XENOTIME age dating granitic gneisses South Eastern Desert EGYPT
下载PDF
The giant tin polymetallic mineralization in southwest China:Integrated geochemical and isotopic constraints and implications for Cretaceous tectonomagmatic event
5
作者 Yanbin Liu Lifei Zhang +3 位作者 Xuanxue Mo M.Santosh Guochen Dong Hongying Zhou 《Geoscience Frontiers》 SCIE CAS CSCD 2020年第5期1593-1608,共16页
The Gejiu-Bozushan-Laojunshan W-Sn polymetallic metallogenic belt(GBLB)in southeast Yunnan Province is an important part of the southwestern Yangtze Block in South China.Tin polymetallic mineralization in this belt in... The Gejiu-Bozushan-Laojunshan W-Sn polymetallic metallogenic belt(GBLB)in southeast Yunnan Province is an important part of the southwestern Yangtze Block in South China.Tin polymetallic mineralization in this belt includes the Niusipo,Malage,Songshujiao,Laochang and Kafang ore fields in the Gejiu area which are spatially and temporally associated with the Kafang-Laochang and Songshujiao granite plutons.These granites are characterized by variable A/CNK values(mostly>1.1,except for two samples with 1.09),high contents of SiO2(74.38-76.84 wt.%)and Al2 O3(12.46-14.05 wt.%)and variable CaO/Na2 O ratios(0.2-0.65)as well as high zirconδ18O values(7.74‰-9.86‰),indicative of S-type affinities.These rocks are depleted in Rb,Th,U,Ti,LREE[(La/Yb)N=1.4-20.51],Ba,Nb,Sr,and Ti and display strong negative Eu and Ba anomalies.The rocks possess high Rb/Sr and Rb/Ba ratios,relatively low initial 87Sr/86Sr ratios(0.6917-0.7101),and less radiogenicεNd(t)values(-8.0 to-9.1).The zircon grains from these rocks show negativeεHf(t)values in the range of-3.7 to-9.9 with mean TDM2(Nd)and TDM2(Hf)values of 1.57 Ga and 1.55 Ga.They show initial 207Pb/204Pb ranging from15.69 to 15.71 and 206Pb/204Pb from 18.36 to 18.70.Monazite from Songshujiao granites exhibits higher U and lower Th/U ratios,lowerδ18O values and higherεHf(t)values than those of the zircon grains in the KafangLaochang granites.The geochemical and isotopic features indicate that the Laochang-Kafang granites originated by partial melting of Mesoproterozoic crustal components including biotite-rich metapelite and metagraywacke,whereas the Songshujiao granites were derived from Mesoproterozoic muscovite-rich metapelite crustal source.Most zircon grains from the Songshujiao,Laochang and Kafang granites have high-U concentrations and their SIMS U-Pb ages show age scatter from 81.6 Ma to 88.6 Ma,80.7 Ma to 86.1 Ma and 82.3 Ma to 87.0 Ma,suggesting formation earlier than the monazite and cassiterite.Monazite SIMS U-Pb ages and Th-Pb ages of three same granite samples are consistent and show yielded 206 Pb/238U ages of 83.7±0.6 Ma,83.7±0.6 Ma,and 83.4±0.6 Ma,and 208Pb/232Th ages of 83.2±0.5 Ma,83.8±0.4 Ma,and 83.5±0.9 Ma,which are within the range of the SIMS zircon U-Pb ages from these rocks.The data constrain the crystallization of the granites at ca.83 Ma.In situ U-Pb dating of two cassiterite samples from the cassiterite-sulfide ore in the Songshujiao ore field and Kafang ore field,and two from the cassiterite-oxide+cassiterite bearing dolomite in the Laochang ore field yielded weighted mean 206 Pb/238U ages of 83.5±0.4 Ma(MSWD=0.6),83.5±0.4 Ma(MSWD=0.5),83.6±0.4 Ma(MSWD=0.6)and 83.2±0.7 Ma(MSWD=0.6),respectively.Combined with geological characteristics,the new geochronological data indicate that the formation of the granites and Sn polymetallic deposits are coeval.We correlate the magmatic and metallogenic event with lithospheric thinning and asthenosphere upwelling in continental extension setting in relation to the eastward subduction of the Neo-Tethys beneath the Sanjiang tectonic domain during Late Cretaceous. 展开更多
关键词 S-type granite SIMS monazite and zircon geochronology Cassiterite U–Pb age Zircon Hf–O isotope Sr–Nd–Pb isotope Yangtze Block
下载PDF
Non-matrix-matched analysis of U-Th-Pb geochronology of bastn?site by laser ablation inductively coupled plasma mass spectrometry 被引量:2
6
作者 Tao LUO He ZHAO +5 位作者 Wen ZHANG Jingliang GUO Keqing ZONG Yongsheng LIU Junfeng ZHANG Zhaochu HU 《Science China Earth Sciences》 SCIE EI CSCD 2021年第4期667-676,共10页
Bastn?site is widespread in alkali granite, carbonatite and REE ore deposits. The U-Th-Pb ages of bastn?site can constrain the mineralization age. Currently, the lack of suitable in situ analysis reference material is... Bastn?site is widespread in alkali granite, carbonatite and REE ore deposits. The U-Th-Pb ages of bastn?site can constrain the mineralization age. Currently, the lack of suitable in situ analysis reference material is the major obstacle of bastn?site U-Th-Pb geochronology. In this study, the matrix effects of U-Pb and Th-Pb age determination in bastn?site using glass NIST 610 as the external calibration reference were evaluated with the 193-nm excimer LA-ICP-MS analysis in normal and additional gases laser ablation modes. The obtained U-Th-Pb ages of bastn?site were approximately 7–11% lower than their reference values in the normal analytical mode(without additional gas). Fortunately, the determined systematic age biases in UTh-Pb dating were significantly reduced(less than 1–2%) with the addition of water vapor within the ablation chamber. This reduction may be attributed to the observed significant suppression of206 Pb/238 U and208 Pb/232 Th downhole fractionation in both NIST 610 glass and bastn?site by introducing a small quantity of water vapor in the ablation chamber. In addition, the obtained206 Pb/238 U and208 Pb/232 Th ages of bastn?site K-9, LZ1384, and MAD809 showed great consistency with their corresponding recommended values. The obtained results show that accurate and precise U-Th-Pb ages of bastn?site can be simultaneously obtained by using glass NIST 610 as the primary calibration standard in 193-nm LA-ICP-MS with the water vapor-assisted method. This simple and effective water vapor-assisted non-matrix-matched laser ablation method helps to promote the geological application of bastn?site U-Th-Pb geochronology. 展开更多
关键词 LA-ICP-MS u-th-pb ages Non-matrix-matched method Bastn?site
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部