Radar slope monitoring is now widely used across the world, for example, the slope stability radar(SSR)and the movement and surveying radar(MSR) are currently in use in many mines around the world.However, to fully re...Radar slope monitoring is now widely used across the world, for example, the slope stability radar(SSR)and the movement and surveying radar(MSR) are currently in use in many mines around the world.However, to fully realize the effectiveness of this radar in notifying mine personnel of an impending slope failure, a method that can confidently predict the time of failure is necessary. The model developed in this study is based on the inverse velocity method pioneered by Fukuzono in 1985. The model named the slope failure prediction model(SFPM) was validated with the displacement data from two slope failures monitored with the MSR. The model was found to be very effective in predicting the time to failure while providing adequate evacuation time once the progressive displacement stage is reached.展开更多
基金supported by the Centennial Trust Fund, School of Mining Engineering, University of the Witwatersrand, South Africa
文摘Radar slope monitoring is now widely used across the world, for example, the slope stability radar(SSR)and the movement and surveying radar(MSR) are currently in use in many mines around the world.However, to fully realize the effectiveness of this radar in notifying mine personnel of an impending slope failure, a method that can confidently predict the time of failure is necessary. The model developed in this study is based on the inverse velocity method pioneered by Fukuzono in 1985. The model named the slope failure prediction model(SFPM) was validated with the displacement data from two slope failures monitored with the MSR. The model was found to be very effective in predicting the time to failure while providing adequate evacuation time once the progressive displacement stage is reached.