Early warning of thermal runaway(TR)of lithium-ion batteries(LIBs)is a significant challenge in current application scenarios.Timely and effective TR early warning technology is urgently required considering the curre...Early warning of thermal runaway(TR)of lithium-ion batteries(LIBs)is a significant challenge in current application scenarios.Timely and effective TR early warning technology is urgently required considering the current fire safety situation of LIBs.In this work,we report an early warning method of TR with online electrochemical impedance spectroscopy(EIS)monitoring,which overcomes the shortcomings of warning methods based on traditional signals such as temperature,gas,and pressure with obvious delay and high cost.With in-situ data acquisition through accelerating rate calorimeter(ARC)-EIS test,the crucial features of TR were extracted using the RReliefF algorithm.TR mechanisms corresponding to the features at specific frequencies were analyzed.Finally,a three-level warning strategy for single battery,series module,and parallel module was formulated,which can successfully send out an early warning signal ahead of the self-heating temperature of battery under thermal abuse condition.The technology can provide a reliable basis for the timely intervention of battery thermal management and fire protection systems and is expected to be applied to electric vehicles and energy storage devices to realize early warning and improve battery safety.展开更多
Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced tran...Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios.展开更多
Based on the current situation and symptoms of the trees' growth in the Humble Administrator's Garden,this paper put forward corresponding monitoring and early-warning standards and technical measures of the a...Based on the current situation and symptoms of the trees' growth in the Humble Administrator's Garden,this paper put forward corresponding monitoring and early-warning standards and technical measures of the ancient and famous trees protection in the Humble Administrator's Garden specifically.The aim of doing this is to establish a scientific basis for the protection of the ancient and famous trees in the Humble Administrator's Garden by setting up systematic fundamental data,dynamic protection standard grades and technique measures of protecting the trees.The main symptom of trees in the Humble Administrator's Garden is the erosion and decay of the tree trunks.Fifteen tree trunks need technical protection,which holds 65.22% of the total sum of trees in the Humble Administrator's Garden.Therefore,much more emphasis should be paid in strengthening technical protection procedures of monitoring and early warning of the tree trunks in the future protection of the ancient and famous trees in the garden.Besides,the rejuvenation technique of rooting zone and rooting system,tree pruning technique as well as tree supporting measures according to the specific condition and symptom of the trees should be concerned with in order to protect the ancient and famous trees in the Humble Administrator's Garden in a more scientific and effective way.展开更多
The network is a major platform for implementing new cyber-telecom crimes.Therefore,it is important to carry out monitoring and early warning research on new cyber-telecom crime platforms,which will lay the foundation...The network is a major platform for implementing new cyber-telecom crimes.Therefore,it is important to carry out monitoring and early warning research on new cyber-telecom crime platforms,which will lay the foundation for the establishment of prevention and control systems to protect citizens’property.However,the deep-learning methods applied in the monitoring and early warning of new cyber-telecom crime platforms have some apparent drawbacks.For instance,the methods suffer from data-distribution differences and tremendous manual efforts spent on data labeling.Therefore,a monitoring and early warning method for new cyber-telecom crime platforms based on the BERT migration learning model is proposed.This method first identifies the text data and their tags,and then performs migration training based on a pre-training model.Finally,the method uses the fine-tuned model to predict and classify new cyber-telecom crimes.Experimental analysis on the crime data collected by public security organizations shows that higher classification accuracy can be achieved using the proposed method,compared with the deep-learning method.展开更多
On the basis of the massive amount of published literature and the long-term practice of our research group in the field of prevention and control of rockburst,the research progress and shortcomings in understanding t...On the basis of the massive amount of published literature and the long-term practice of our research group in the field of prevention and control of rockburst,the research progress and shortcomings in understanding the rockburst phenomenon have been comprehensively in-vestigated.This study focuses on the occurrence mechanism and monitoring and early warning technology for rockburst in coal mines.Results showed that the prevention and control of rockburst had made significant progress.However,with the increasing mining depth,several unre-solved concerns remain challenging.From the in-depth research and analysis,it can be inferred that rockburst disasters involve three main problems,i.e.,the induction factors are complicated,the mechanism is still unclear,and the accuracy of the monitoring equipment and multi-source stereo monitoring technology is insufficient.The monitoring and warning standards of rockburst need to be further clarified and im-proved.Combined with the Internet of Things,cloud computing,and big data,a study of the trend of rockburst needs to be conducted.Further-more,the mechanism of multiphase and multi-field coupling induced by rockburst on a large scale needs to be explored.A multisystem and multiparameter integrated monitoring and early warning system and remote monitoring cloud platform for rockburst should be explored and developed.High-reliability sensing technology and equipment and perfect monitoring and early warning standards are considered to be the de-velopment direction of rockburst in the future.This research will help experts and technicians adopt effective measures for controlling rock-burst disasters.展开更多
Oil and gas pipelines are of great importance in China,and pipeline security problems pose a serious threat to society and the environment.Pipeline safety has therefore become an integral part of the entire national e...Oil and gas pipelines are of great importance in China,and pipeline security problems pose a serious threat to society and the environment.Pipeline safety has therefore become an integral part of the entire national economy.Landslides are the most harmful type of pipeline accident,and have directed increasing public attention to safety issues.Although some useful results have been obtained in the investigation and prevention of pipeline-landslide hazards,there remains a need for effective monitoring and early warning methods,especially when the complexity of pipeline-landslides is considered.Because oil and gas pipeline-landslides typically occur in the superficial soil layers,monitoring instruments must be easy to install and must cause minimal disturbance to the surrounding soil and pipeline.To address the particular characteristics of pipelinelandslides,we developed a multi-parameter integrated monitoring system called disaster reduction stick equipment.In this paper,we detail this monitoring and early warning system for pipeline-landslide hazards based on an on-site monitoring network and early warning algorithms.The functionality of our system was verified by its successful application to the Chongqing Loujiazhuang pipeline-landslide in China.The results presented here provide guidelines for the monitoring,early warning,and prevention of pipeline geological hazards.展开更多
In order to overcome the limitation that rock mass instability warnings are caused by a lack of deep consideration of the inherent mechanism of disaster formation, early warning signs of rock mass instability were det...In order to overcome the limitation that rock mass instability warnings are caused by a lack of deep consideration of the inherent mechanism of disaster formation, early warning signs of rock mass instability were detected and multi-field coupling was analyzed. A multi-field coupling model of a damaged rock mass was established. The relationship between microseismic activity parameters and rock mass stability was analyzed, and a multi-parameter early warning index system was established and its solution program was compiled. Based on the D-S data fusion theory,an early warning model of rock mass instability combining multi-field coupling analysis and microseismic monitoring was constructed. Taking an underground mine stope as an object, the multi-field coupling model and its solution program were used to analyze mining response characteristics. The seismic field data were used to verify the accuracy of the multi-field coupling analysis. The early warning model was used to predict the instability of stope rock mass,and the early warning result is consistent with a real-world scenario.展开更多
At present,debris flow warning uses precipitation threshold and issues regional warning throughout the world.Precipitation threshold warning is less accurate and in most of the time large portion of unaffected populat...At present,debris flow warning uses precipitation threshold and issues regional warning throughout the world.Precipitation threshold warning is less accurate and in most of the time large portion of unaffected population are evacuated.More precise warning should use direct monitoring.There are many debris flow monitoring stations but no real time warning system in use.The main reason is that the identification and confirmation of debris flow occurrence requires human interaction and it is too slow.A debris flow monitoring and warning system has been installed in the midstream section of Yusui Stream,Taiwan China.The monitoring station operates fully automatically,providing early warnings without the need for manual intervention.The system comprises two webcam cameras,two Micro-Electro-Mechanical Systems(MEMS),and a rain gauge.The arrival of debris flows is detected and confirmed through both webcam images and MEMS signals.Once debris flow is detected,the system automatically issues a warning to the affected areas via voice messages,line messages,broadcasts,and web-based alerts.The webcam cameras are also used to estimate debris flow velocity and flow height,while the MEMS sensors are utilized to determine the phase speed and flow rate.On July 24th,2014,Typhoon Gaemi triggered several debris flows,and the system successfully issued several warnings automatically.The entire video record,along with depth variation data,was recorded automatically.展开更多
As a new technical means that can detect abnormal signs of water inrush in advance and give an early warning,the automatic monitoring and early warning of water inrush in mines has been widely valued in recent years.D...As a new technical means that can detect abnormal signs of water inrush in advance and give an early warning,the automatic monitoring and early warning of water inrush in mines has been widely valued in recent years.Due to the many factors affecting water inrush and the complicated water inrush mechanism,many factors close to water inrush may have precursory abnormal changes.At present,the existing monitoring and early warning system mainly uses a few monitoring indicators such as groundwater level,water influx,and temperature,and performs water inrush early warning through the abnormal change of a single factor.However,there are relatively few multi-factor comprehensive early warning identification models.Based on the analysis of the abnormal changes of precursor factors in multiple water inrush cases,11 measurable and effective indicators including groundwater flow field,hydrochemical field and temperature field are proposed.Finally,taking Hengyuan coal mine as an example,6 indicators with long-term monitoring data sequences were selected to establish a single-index hierarchical early-warning recognition model,a multi-factor linear recognition model,and a comprehensive intelligent early-warning recognition model.The results show that the correct rate of early warning can reach 95.2%.展开更多
The well-developed multifunctional wearable electronic device has fed the demand for human medicine and health monitoring in complex situations.However,the advancement of nuclear technology,especially irradiation medi...The well-developed multifunctional wearable electronic device has fed the demand for human medicine and health monitoring in complex situations.However,the advancement of nuclear technology,especially irradiation medicine and safety inspections,has increased the exposure risk of irradiation safety workers.Traditional irradiation detectors are stiff and incompatible with the skin,and lack human health monitoring function,thus it’s vital to apply these flexible sensors for irradiation warning.Here,we report a novel composite gel device synthesized through solution processes by combining the Cs_(3)Cu_(2)I_(5):Zn nanoscintillator with the pre-patterned biocompatible gel,exhibiting a bi-functional response to motion/vibration sensing and sensitive irradiation warning.These wearable devices achieve a pressure sensitivity of up to 34 kPa^(-1)in a low-pressure range (0–3 kPa),a low limit of detection (LoD) down to 1.4 Pa,enabling health monitoring functions of pulse monitoring,finger bending,and elbow bending.Simultaneously,the device scintillates under X-ray irradiation among a wide dose rate range of 54–1167μGy_(air)s^(-1).The robust device shows no obvious signal loss after 4000 compression cycles and also excellent irradiation resistance over 50 days,broadening the path for designing and realizing new functional wearable devices.展开更多
Landslides not only cause property losses,but also kill and injure large numbers of people every year in the mountainous areas. These losses and casualties may be avoided to some extent by early warning systems for la...Landslides not only cause property losses,but also kill and injure large numbers of people every year in the mountainous areas. These losses and casualties may be avoided to some extent by early warning systems for landslides. In this paper, a realtime monitoring network and a computer-aided automatic early warning system(EWS) are presented with details of their design and an example of application in the Longjingwan landslide, Kaiyang County, Guizhou Province. Then, according to principle simple method of landslide prediction, the setting of alarm levels and the design of appropriate counter-measures are presented. A four-level early warning system(Zero, Outlook, Attention and Warning) has been adopted, and the velocity threshold was selected as the main warning threshold for the landslide occurrence, but expert judgment is included in the EWS to avoid false alarms. A case study shows the applicability and reliability for landslide risk management, and recommendations are presented for other similar projects.展开更多
Providing early safety warning for batteries in real-world applications is challenging.In this study,comprehensive thermal abuse experiments are conducted to clarify the multidimensional signal evolution of battery fa...Providing early safety warning for batteries in real-world applications is challenging.In this study,comprehensive thermal abuse experiments are conducted to clarify the multidimensional signal evolution of battery failure under various preload forces.The time-sequence relationship among expansion force,voltage,and temperature during thermal abuse under five categorised stages is revealed.Three characteristic peaks are identified for the expansion force,which correspond to venting,internal short-circuiting,and thermal runaway.In particular,an abnormal expansion force signal can be detected at temperatures as low as 42.4°C,followed by battery thermal runaway in approximately 6.5 min.Moreover,reducing the preload force can improve the effectiveness of the early-warning method via the expansion force.Specifically,reducing the preload force from 6000 to 1000 N prolongs the warning time(i.e.,227 to 398 s)before thermal runaway is triggered.Based on the results,a notable expansion force early-warning method is proposed that can successfully enable early safety warning approximately 375 s ahead of battery thermal runaway and effectively prevent failure propagation with module validation.This study provides a practical reference for the development of timely and accurate early-warning strategies as well as guidance for the design of safer battery systems.展开更多
BACKGROUND:This study aimed to evaluate the discriminatory performance of 11 vital sign-based early warning scores(EWSs)and three shock indices in early sepsis prediction in the emergency department(ED).METHODS:We per...BACKGROUND:This study aimed to evaluate the discriminatory performance of 11 vital sign-based early warning scores(EWSs)and three shock indices in early sepsis prediction in the emergency department(ED).METHODS:We performed a retrospective study on consecutive adult patients with an infection over 3 months in a public ED in Hong Kong.The primary outcome was sepsis(Sepsis-3 definition)within 48 h of ED presentation.Using c-statistics and the DeLong test,we compared 11 EWSs,including the National Early Warning Score 2(NEWS2),Modified Early Warning Score,and Worthing Physiological Scoring System(WPS),etc.,and three shock indices(the shock index[SI],modified shock index[MSI],and diastolic shock index[DSI]),with Systemic Inflammatory Response Syndrome(SIRS)and quick Sequential Organ Failure Assessment(qSOFA)in predicting the primary outcome,intensive care unit admission,and mortality at different time points.RESULTS:We analyzed 601 patients,of whom 166(27.6%)developed sepsis.NEWS2 had the highest point estimate(area under the receiver operating characteristic curve[AUROC]0.75,95%CI 0.70-0.79)and was significantly better than SIRS,qSOFA,other EWSs and shock indices,except WPS,at predicting the primary outcome.However,the pooled sensitivity and specificity of NEWS2≥5 for the prediction of sepsis were 0.45(95%CI 0.37-0.52)and 0.88(95%CI 0.85-0.91),respectively.The discriminatory performance of all EWSs and shock indices declined when used to predict mortality at a more remote time point.CONCLUSION:NEWS2 compared favorably with other EWSs and shock indices in early sepsis prediction but its low sensitivity at the usual cut-off point requires further modification for sepsis screening.展开更多
Bivalve farming plays a dominant role in mariculture in China.Paralytic shellfish toxins(PSTs)can be accumulated in bivalves and cause poisoning the consumers.A sensitive detection of PSTs can provide early warning to...Bivalve farming plays a dominant role in mariculture in China.Paralytic shellfish toxins(PSTs)can be accumulated in bivalves and cause poisoning the consumers.A sensitive detection of PSTs can provide early warning to decrease poisoning events in bivalve consuming.PSTs are traditionally examined using the whole soft-tissues.However,PSTs accumulation varies dramatically in different tissues of bivalves.Some tough tissues/organs(such as mantle),which account for a large proportion of the total soft body,exhibit a lower accumulation of PSTs and make the toxin extraction time-and reagent-consuming,potentially decreasing the accuracy and sensitivity of PSTs monitoring in bivalves.To develop a sensitive and cost-effective approach for PSTs examination in massively farmed bivalves,we fed three commercially important bivalves,Yesso scallop Patinopecten yessoensis,Pacific oyster Crassostrea gigas,and blue mussel Mytilus edulis with PSTs-producing dinoflagellate Alexandrium catenella,and detected PSTs concentration in different tissues.For all three bivalve species,the digestive gland accumulated much more PSTs than other tissues,and the digestive gland’s toxicity was significantly correlated with the PSTs toxicity of the whole soft-tissues,with r^(2)=0.94,0.92,and 0.94 for Yesso scallop,Pacific oyster,and blue mussel,respectively.When the toxicity of the whole soft-tissues reached 80μgSTXeq(100g)^(−1),the regulatory limit for commercial shellfish,the digestive gland’s toxicity reached 571.48,498.90,and 859.20μgSTXeq(100g)^(−1) in Yesso scallop,Pacific oyster,and blue mussel,respectively.Our results indicate that digestive gland can be used for the sensitive and cost-effective monitoring of PSTs in bivalves.展开更多
Monitoring and early warning is an important means to effectively prevent risks in agricultural production,consumption and price.In particular,with the change of modes of national administration against the background...Monitoring and early warning is an important means to effectively prevent risks in agricultural production,consumption and price.In particular,with the change of modes of national administration against the background of big data,improving the capacity to monitor agricultural products is of great significance for macroeconomic decision-making.Agricultural product information early warning thresholds are the core of agricultural product monitoring and early warning.How to appropriately determine the early warning thresholds of multi-temporal agricultural product information is a key question to realize real-time and dynamic monitoring and early warning.Based on the theory of abnormal fluctuation of agricultural product information and the research of substantive impact on the society,this paper comprehensively discussed the methods to determine the thresholds of agricultural product information fluctuation in different time dimensions.Based on the data of the National Bureau of Statistics of China(NBSC)and survey data,this paper used a variety of statistical methods to determine the early warning thresholds of the production,consumption and prices of agricultural products.Combined with Delphi expert judgment correction method,it finally determined the early warning thresholds of agricultural product information in multiple time,and carried out early warning analysis on the fluctuation of agricultural product monitoring information in 2018.The results show that:(1)the daily,weekly and monthly monitoring and early warning thresholds of agricultural products play an important early warning role in monitoring abnormal fluctuations with agricultural products;(2)the multitemporal monitoring and early warning thresholds of agricultural product information identified by the research institute can provide effective early warning on current abnormal fluctuation of agricultural product information,provide a benchmarking standard for China's agricultural production,consumption and price monitoring and early warning at the national macro level,and further improve the application of China's agricultural product monitoring and early warning.展开更多
The global incidence of infectious diseases has increased in recent years,posing a significant threat to human health.Hospitals typically serve as frontline institutions for detecting infectious diseases.However,accur...The global incidence of infectious diseases has increased in recent years,posing a significant threat to human health.Hospitals typically serve as frontline institutions for detecting infectious diseases.However,accurately identifying warning signals of infectious diseases in a timely manner,especially emerging infectious diseases,can be challenging.Consequently,there is a pressing need to integrate treatment and disease prevention data to conduct comprehensive analyses aimed at preventing and controlling infectious diseases within hospitals.This paper examines the role of medical data in the early identification of infectious diseases,explores early warning technologies for infectious disease recognition,and assesses monitoring and early warning mechanisms for infectious diseases.We propose that hospitals adopt novel multidimensional early warning technologies to mine and analyze medical data from various systems,in compliance with national strategies to integrate clinical treatment and disease prevention.Furthermore,hospitals should establish institution-specific,clinical-based early warning models for infectious diseases to actively monitor early signals and enhance preparedness for infectious disease prevention and control.展开更多
A significant portion of Landslide Early Warning Systems (LEWS) relies on the definition of operational thresholds and the monitoring of cumulative rainfall for alert issuance. These thresholds can be obtained in vari...A significant portion of Landslide Early Warning Systems (LEWS) relies on the definition of operational thresholds and the monitoring of cumulative rainfall for alert issuance. These thresholds can be obtained in various ways, but most often they are based on previous landslide data. This approach introduces several limitations. For instance, there is a requirement for the location to have been previously monitored in some way to have this type of information recorded. Another significant limitation is the need for information regarding the location and timing of incidents. Despite the current ease of obtaining location information (GPS, drone images, etc.), the timing of the event remains challenging to ascertain for a considerable portion of landslide data. Concerning rainfall monitoring, there are multiple ways to consider it, for instance, examining accumulations over various intervals (1 h, 6 h, 24 h, 72 h), as well as in the calculation of effective rainfall, which represents the precipitation that actually infiltrates the soil. However, in the vast majority of cases, both the thresholds and the rain monitoring approach are defined manually and subjectively, relying on the operators’ experience. This makes the process labor-intensive and time-consuming, hindering the establishment of a truly standardized and rapidly scalable methodology on a large scale. In this work, we propose a Landslides Early Warning System (LEWS) based on the concept of rainfall half-life and the determination of thresholds using Cluster Analysis and data inversion. The system is designed to be applied in extensive monitoring networks, such as the one utilized by Cemaden, Brazil’s National Center for Monitoring and Early Warning of Natural Disasters.展开更多
The monitoring and warning of urban rail transit is the core of operation management, and the breadth and depth of the monitoring range directly affect the quality of urban rail transit operation. For the current dome...The monitoring and warning of urban rail transit is the core of operation management, and the breadth and depth of the monitoring range directly affect the quality of urban rail transit operation. For the current domestic monitoring system, most of the critical equipments and technologies are introduced from abroad;it is diseconomy, and also causes hidden danger. Realizing the localization of monitoring and early warning system is imperative. Based on the analysis of the present situation of urban rail transit operation safety at home and abroad, the paper proposes to use integrated technology to design basic framework of monitoring and warning system of urban rail train, and puts forward the critical technologies to realize the system. Compared with the existing monitoring system, the integrated monitoring system has the characteristics of wide monitoring range, clear division of labor, centralized management, coordination and integration operation and intelligent management, and embodies the concept of people-oriented. It has scientific significance for future construction of domestic Integrated Monitoring and Early Warning System (IMEWS) of urban rail transit.展开更多
With the increasing penetration of renewable energy in power system,renewable energy power ramp events(REPREs),dominated by wind power and photovoltaic power,pose significant threats to the secure and stable operation...With the increasing penetration of renewable energy in power system,renewable energy power ramp events(REPREs),dominated by wind power and photovoltaic power,pose significant threats to the secure and stable operation of power systems.This paper presents an early warning method for REPREs based on long short-term memory(LSTM)network and fuzzy logic.First,the warning levels of REPREs are defined by assessing the control costs of various power control measures.Then,the next 4-h power support capability of external grid is estimated by a tie line power predictionmodel,which is constructed based on the LSTMnetwork.Finally,considering the risk attitudes of dispatchers,fuzzy rules are employed to address the boundary value attribution of the early warning interval,improving the rationality of power ramp event early warning.Simulation results demonstrate that the proposed method can generate reasonable early warning levels for REPREs,guiding decision-making for control strategy.展开更多
Based on the needs of characteristic agricultural production for meteorological services in Huzhou City,we use C# programming language to develop the meteorological disaster monitoring and early warning platform for c...Based on the needs of characteristic agricultural production for meteorological services in Huzhou City,we use C# programming language to develop the meteorological disaster monitoring and early warning platform for characteristic agriculture in Huzhou City. This platform integrates the functions of meteorological and agricultural information monitoring,disaster identification and early warning,fine weather forecast product display,and data query and management,which effectively enhances the capacity of meteorological disaster monitoring and early warning for characteristic agriculture in Huzhou City,and provides strong technical support for the meteorological and agricultural departments in the agricultural meteorological services.展开更多
基金supported by the National Natural Science Foundation of China(U2033204,51976209)the Natural Science Foundation of Hefei(2022019)supported by Youth Innovative Promotion Association CAS(Y201768)。
文摘Early warning of thermal runaway(TR)of lithium-ion batteries(LIBs)is a significant challenge in current application scenarios.Timely and effective TR early warning technology is urgently required considering the current fire safety situation of LIBs.In this work,we report an early warning method of TR with online electrochemical impedance spectroscopy(EIS)monitoring,which overcomes the shortcomings of warning methods based on traditional signals such as temperature,gas,and pressure with obvious delay and high cost.With in-situ data acquisition through accelerating rate calorimeter(ARC)-EIS test,the crucial features of TR were extracted using the RReliefF algorithm.TR mechanisms corresponding to the features at specific frequencies were analyzed.Finally,a three-level warning strategy for single battery,series module,and parallel module was formulated,which can successfully send out an early warning signal ahead of the self-heating temperature of battery under thermal abuse condition.The technology can provide a reliable basis for the timely intervention of battery thermal management and fire protection systems and is expected to be applied to electric vehicles and energy storage devices to realize early warning and improve battery safety.
基金research was funded by Science and Technology Project of State Grid Corporation of China under grant number 5200-202319382A-2-3-XG.
文摘Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios.
基金Supported by 2008 Technology Development Projects of Suzhou Science and Technology Bureau-Research on the Protection and the Standards of Monitoring and Early Warning of Ancient and Famous Trees in Suzhou Classical Gardens (SS08055)~~
文摘Based on the current situation and symptoms of the trees' growth in the Humble Administrator's Garden,this paper put forward corresponding monitoring and early-warning standards and technical measures of the ancient and famous trees protection in the Humble Administrator's Garden specifically.The aim of doing this is to establish a scientific basis for the protection of the ancient and famous trees in the Humble Administrator's Garden by setting up systematic fundamental data,dynamic protection standard grades and technique measures of protecting the trees.The main symptom of trees in the Humble Administrator's Garden is the erosion and decay of the tree trunks.Fifteen tree trunks need technical protection,which holds 65.22% of the total sum of trees in the Humble Administrator's Garden.Therefore,much more emphasis should be paid in strengthening technical protection procedures of monitoring and early warning of the tree trunks in the future protection of the ancient and famous trees in the garden.Besides,the rejuvenation technique of rooting zone and rooting system,tree pruning technique as well as tree supporting measures according to the specific condition and symptom of the trees should be concerned with in order to protect the ancient and famous trees in the Humble Administrator's Garden in a more scientific and effective way.
基金supported in part by the Basic Public Welfare Research Program of Zhejiang Province under Grant LGF20G030001.
文摘The network is a major platform for implementing new cyber-telecom crimes.Therefore,it is important to carry out monitoring and early warning research on new cyber-telecom crime platforms,which will lay the foundation for the establishment of prevention and control systems to protect citizens’property.However,the deep-learning methods applied in the monitoring and early warning of new cyber-telecom crime platforms have some apparent drawbacks.For instance,the methods suffer from data-distribution differences and tremendous manual efforts spent on data labeling.Therefore,a monitoring and early warning method for new cyber-telecom crime platforms based on the BERT migration learning model is proposed.This method first identifies the text data and their tags,and then performs migration training based on a pre-training model.Finally,the method uses the fine-tuned model to predict and classify new cyber-telecom crimes.Experimental analysis on the crime data collected by public security organizations shows that higher classification accuracy can be achieved using the proposed method,compared with the deep-learning method.
基金This work was financially supported by the National Nat-ural Science Foundation of China(Nos.51634001,51774023,and 51904019).
文摘On the basis of the massive amount of published literature and the long-term practice of our research group in the field of prevention and control of rockburst,the research progress and shortcomings in understanding the rockburst phenomenon have been comprehensively in-vestigated.This study focuses on the occurrence mechanism and monitoring and early warning technology for rockburst in coal mines.Results showed that the prevention and control of rockburst had made significant progress.However,with the increasing mining depth,several unre-solved concerns remain challenging.From the in-depth research and analysis,it can be inferred that rockburst disasters involve three main problems,i.e.,the induction factors are complicated,the mechanism is still unclear,and the accuracy of the monitoring equipment and multi-source stereo monitoring technology is insufficient.The monitoring and warning standards of rockburst need to be further clarified and im-proved.Combined with the Internet of Things,cloud computing,and big data,a study of the trend of rockburst needs to be conducted.Further-more,the mechanism of multiphase and multi-field coupling induced by rockburst on a large scale needs to be explored.A multisystem and multiparameter integrated monitoring and early warning system and remote monitoring cloud platform for rockburst should be explored and developed.High-reliability sensing technology and equipment and perfect monitoring and early warning standards are considered to be the de-velopment direction of rockburst in the future.This research will help experts and technicians adopt effective measures for controlling rock-burst disasters.
基金financially supported by National Key R&D Program of China (No. 2018YFC1505201)National Natural Science Foundation of China (No. 41901008)+2 种基金Open Fund Project of Key Laboratory of Mountain Hazards and Surface Processes of the Chinese Academy of Sciencesthe Fundamental Research Funds for the Central Universities (Grant NO. 2682018CX05)financially supported by China Scholarship Council
文摘Oil and gas pipelines are of great importance in China,and pipeline security problems pose a serious threat to society and the environment.Pipeline safety has therefore become an integral part of the entire national economy.Landslides are the most harmful type of pipeline accident,and have directed increasing public attention to safety issues.Although some useful results have been obtained in the investigation and prevention of pipeline-landslide hazards,there remains a need for effective monitoring and early warning methods,especially when the complexity of pipeline-landslides is considered.Because oil and gas pipeline-landslides typically occur in the superficial soil layers,monitoring instruments must be easy to install and must cause minimal disturbance to the surrounding soil and pipeline.To address the particular characteristics of pipelinelandslides,we developed a multi-parameter integrated monitoring system called disaster reduction stick equipment.In this paper,we detail this monitoring and early warning system for pipeline-landslide hazards based on an on-site monitoring network and early warning algorithms.The functionality of our system was verified by its successful application to the Chongqing Loujiazhuang pipeline-landslide in China.The results presented here provide guidelines for the monitoring,early warning,and prevention of pipeline geological hazards.
基金Project(2017yfc0602901)supported by the National Key R&D Program of China during the Thirteenth Five-Year Plan PeriodProject(2017zzts204)supported by the Fundamental Research Funds for the Central Universities of Central South University,China
文摘In order to overcome the limitation that rock mass instability warnings are caused by a lack of deep consideration of the inherent mechanism of disaster formation, early warning signs of rock mass instability were detected and multi-field coupling was analyzed. A multi-field coupling model of a damaged rock mass was established. The relationship between microseismic activity parameters and rock mass stability was analyzed, and a multi-parameter early warning index system was established and its solution program was compiled. Based on the D-S data fusion theory,an early warning model of rock mass instability combining multi-field coupling analysis and microseismic monitoring was constructed. Taking an underground mine stope as an object, the multi-field coupling model and its solution program were used to analyze mining response characteristics. The seismic field data were used to verify the accuracy of the multi-field coupling analysis. The early warning model was used to predict the instability of stope rock mass,and the early warning result is consistent with a real-world scenario.
基金supported by MOA project 111AS-7.3.4-SB-S3 and 112AS-7.3.4-SB-S3.
文摘At present,debris flow warning uses precipitation threshold and issues regional warning throughout the world.Precipitation threshold warning is less accurate and in most of the time large portion of unaffected population are evacuated.More precise warning should use direct monitoring.There are many debris flow monitoring stations but no real time warning system in use.The main reason is that the identification and confirmation of debris flow occurrence requires human interaction and it is too slow.A debris flow monitoring and warning system has been installed in the midstream section of Yusui Stream,Taiwan China.The monitoring station operates fully automatically,providing early warnings without the need for manual intervention.The system comprises two webcam cameras,two Micro-Electro-Mechanical Systems(MEMS),and a rain gauge.The arrival of debris flows is detected and confirmed through both webcam images and MEMS signals.Once debris flow is detected,the system automatically issues a warning to the affected areas via voice messages,line messages,broadcasts,and web-based alerts.The webcam cameras are also used to estimate debris flow velocity and flow height,while the MEMS sensors are utilized to determine the phase speed and flow rate.On July 24th,2014,Typhoon Gaemi triggered several debris flows,and the system successfully issued several warnings automatically.The entire video record,along with depth variation data,was recorded automatically.
基金financially supported by the National Key Research and Development Program of China(No.2019YFC1805400)。
文摘As a new technical means that can detect abnormal signs of water inrush in advance and give an early warning,the automatic monitoring and early warning of water inrush in mines has been widely valued in recent years.Due to the many factors affecting water inrush and the complicated water inrush mechanism,many factors close to water inrush may have precursory abnormal changes.At present,the existing monitoring and early warning system mainly uses a few monitoring indicators such as groundwater level,water influx,and temperature,and performs water inrush early warning through the abnormal change of a single factor.However,there are relatively few multi-factor comprehensive early warning identification models.Based on the analysis of the abnormal changes of precursor factors in multiple water inrush cases,11 measurable and effective indicators including groundwater flow field,hydrochemical field and temperature field are proposed.Finally,taking Hengyuan coal mine as an example,6 indicators with long-term monitoring data sequences were selected to establish a single-index hierarchical early-warning recognition model,a multi-factor linear recognition model,and a comprehensive intelligent early-warning recognition model.The results show that the correct rate of early warning can reach 95.2%.
基金financially supported by the National Natural Science Foundation of China (No. 52173166 and 22105083)the Project of Science and Technology Development Plan of Jilin Province (No. 20230101025JC)+1 种基金Xiaomi Young Scholar Projectthe Fundamental Research Funds for the Central Universities, JLU, and JLUSTIRT (2017TD-06)。
文摘The well-developed multifunctional wearable electronic device has fed the demand for human medicine and health monitoring in complex situations.However,the advancement of nuclear technology,especially irradiation medicine and safety inspections,has increased the exposure risk of irradiation safety workers.Traditional irradiation detectors are stiff and incompatible with the skin,and lack human health monitoring function,thus it’s vital to apply these flexible sensors for irradiation warning.Here,we report a novel composite gel device synthesized through solution processes by combining the Cs_(3)Cu_(2)I_(5):Zn nanoscintillator with the pre-patterned biocompatible gel,exhibiting a bi-functional response to motion/vibration sensing and sensitive irradiation warning.These wearable devices achieve a pressure sensitivity of up to 34 kPa^(-1)in a low-pressure range (0–3 kPa),a low limit of detection (LoD) down to 1.4 Pa,enabling health monitoring functions of pulse monitoring,finger bending,and elbow bending.Simultaneously,the device scintillates under X-ray irradiation among a wide dose rate range of 54–1167μGy_(air)s^(-1).The robust device shows no obvious signal loss after 4000 compression cycles and also excellent irradiation resistance over 50 days,broadening the path for designing and realizing new functional wearable devices.
基金financially supported by the State Key Laboratory of Geo-hazard Prevention and Geo-environment Protection (Chengdu University of Technology) (Grant No. SKLGP2013Z007)the National Natural Science Foundation of China (Grant No. 41302242)
文摘Landslides not only cause property losses,but also kill and injure large numbers of people every year in the mountainous areas. These losses and casualties may be avoided to some extent by early warning systems for landslides. In this paper, a realtime monitoring network and a computer-aided automatic early warning system(EWS) are presented with details of their design and an example of application in the Longjingwan landslide, Kaiyang County, Guizhou Province. Then, according to principle simple method of landslide prediction, the setting of alarm levels and the design of appropriate counter-measures are presented. A four-level early warning system(Zero, Outlook, Attention and Warning) has been adopted, and the velocity threshold was selected as the main warning threshold for the landslide occurrence, but expert judgment is included in the EWS to avoid false alarms. A case study shows the applicability and reliability for landslide risk management, and recommendations are presented for other similar projects.
基金supported by the National Key R&D Program of China(2022YFB2404300)the National Natural Science Foundation of China(NSFC Nos.52177217 and 52106244)。
文摘Providing early safety warning for batteries in real-world applications is challenging.In this study,comprehensive thermal abuse experiments are conducted to clarify the multidimensional signal evolution of battery failure under various preload forces.The time-sequence relationship among expansion force,voltage,and temperature during thermal abuse under five categorised stages is revealed.Three characteristic peaks are identified for the expansion force,which correspond to venting,internal short-circuiting,and thermal runaway.In particular,an abnormal expansion force signal can be detected at temperatures as low as 42.4°C,followed by battery thermal runaway in approximately 6.5 min.Moreover,reducing the preload force can improve the effectiveness of the early-warning method via the expansion force.Specifically,reducing the preload force from 6000 to 1000 N prolongs the warning time(i.e.,227 to 398 s)before thermal runaway is triggered.Based on the results,a notable expansion force early-warning method is proposed that can successfully enable early safety warning approximately 375 s ahead of battery thermal runaway and effectively prevent failure propagation with module validation.This study provides a practical reference for the development of timely and accurate early-warning strategies as well as guidance for the design of safer battery systems.
基金supported by the Health and Medical Research Fund of the Food and Health Bureau of the Hong Kong Special Administrative Region(Project No.19201161)Seed Fund from the University of Hong Kong.
文摘BACKGROUND:This study aimed to evaluate the discriminatory performance of 11 vital sign-based early warning scores(EWSs)and three shock indices in early sepsis prediction in the emergency department(ED).METHODS:We performed a retrospective study on consecutive adult patients with an infection over 3 months in a public ED in Hong Kong.The primary outcome was sepsis(Sepsis-3 definition)within 48 h of ED presentation.Using c-statistics and the DeLong test,we compared 11 EWSs,including the National Early Warning Score 2(NEWS2),Modified Early Warning Score,and Worthing Physiological Scoring System(WPS),etc.,and three shock indices(the shock index[SI],modified shock index[MSI],and diastolic shock index[DSI]),with Systemic Inflammatory Response Syndrome(SIRS)and quick Sequential Organ Failure Assessment(qSOFA)in predicting the primary outcome,intensive care unit admission,and mortality at different time points.RESULTS:We analyzed 601 patients,of whom 166(27.6%)developed sepsis.NEWS2 had the highest point estimate(area under the receiver operating characteristic curve[AUROC]0.75,95%CI 0.70-0.79)and was significantly better than SIRS,qSOFA,other EWSs and shock indices,except WPS,at predicting the primary outcome.However,the pooled sensitivity and specificity of NEWS2≥5 for the prediction of sepsis were 0.45(95%CI 0.37-0.52)and 0.88(95%CI 0.85-0.91),respectively.The discriminatory performance of all EWSs and shock indices declined when used to predict mortality at a more remote time point.CONCLUSION:NEWS2 compared favorably with other EWSs and shock indices in early sepsis prediction but its low sensitivity at the usual cut-off point requires further modification for sepsis screening.
基金funded by the National Key R&D Project(No.2019YFC1605704)the Taishan Industry Leading Talent Project(No.LJNY201816)supported by Sanya Yazhou Bay Science and Technology City(No.SKJCKJ-2019KY01).
文摘Bivalve farming plays a dominant role in mariculture in China.Paralytic shellfish toxins(PSTs)can be accumulated in bivalves and cause poisoning the consumers.A sensitive detection of PSTs can provide early warning to decrease poisoning events in bivalve consuming.PSTs are traditionally examined using the whole soft-tissues.However,PSTs accumulation varies dramatically in different tissues of bivalves.Some tough tissues/organs(such as mantle),which account for a large proportion of the total soft body,exhibit a lower accumulation of PSTs and make the toxin extraction time-and reagent-consuming,potentially decreasing the accuracy and sensitivity of PSTs monitoring in bivalves.To develop a sensitive and cost-effective approach for PSTs examination in massively farmed bivalves,we fed three commercially important bivalves,Yesso scallop Patinopecten yessoensis,Pacific oyster Crassostrea gigas,and blue mussel Mytilus edulis with PSTs-producing dinoflagellate Alexandrium catenella,and detected PSTs concentration in different tissues.For all three bivalve species,the digestive gland accumulated much more PSTs than other tissues,and the digestive gland’s toxicity was significantly correlated with the PSTs toxicity of the whole soft-tissues,with r^(2)=0.94,0.92,and 0.94 for Yesso scallop,Pacific oyster,and blue mussel,respectively.When the toxicity of the whole soft-tissues reached 80μgSTXeq(100g)^(−1),the regulatory limit for commercial shellfish,the digestive gland’s toxicity reached 571.48,498.90,and 859.20μgSTXeq(100g)^(−1) in Yesso scallop,Pacific oyster,and blue mussel,respectively.Our results indicate that digestive gland can be used for the sensitive and cost-effective monitoring of PSTs in bivalves.
基金The Science and Technoloav Innovation Program of the Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2020-A11-02)is appreciated for supporting this study.
文摘Monitoring and early warning is an important means to effectively prevent risks in agricultural production,consumption and price.In particular,with the change of modes of national administration against the background of big data,improving the capacity to monitor agricultural products is of great significance for macroeconomic decision-making.Agricultural product information early warning thresholds are the core of agricultural product monitoring and early warning.How to appropriately determine the early warning thresholds of multi-temporal agricultural product information is a key question to realize real-time and dynamic monitoring and early warning.Based on the theory of abnormal fluctuation of agricultural product information and the research of substantive impact on the society,this paper comprehensively discussed the methods to determine the thresholds of agricultural product information fluctuation in different time dimensions.Based on the data of the National Bureau of Statistics of China(NBSC)and survey data,this paper used a variety of statistical methods to determine the early warning thresholds of the production,consumption and prices of agricultural products.Combined with Delphi expert judgment correction method,it finally determined the early warning thresholds of agricultural product information in multiple time,and carried out early warning analysis on the fluctuation of agricultural product monitoring information in 2018.The results show that:(1)the daily,weekly and monthly monitoring and early warning thresholds of agricultural products play an important early warning role in monitoring abnormal fluctuations with agricultural products;(2)the multitemporal monitoring and early warning thresholds of agricultural product information identified by the research institute can provide effective early warning on current abnormal fluctuation of agricultural product information,provide a benchmarking standard for China's agricultural production,consumption and price monitoring and early warning at the national macro level,and further improve the application of China's agricultural product monitoring and early warning.
文摘The global incidence of infectious diseases has increased in recent years,posing a significant threat to human health.Hospitals typically serve as frontline institutions for detecting infectious diseases.However,accurately identifying warning signals of infectious diseases in a timely manner,especially emerging infectious diseases,can be challenging.Consequently,there is a pressing need to integrate treatment and disease prevention data to conduct comprehensive analyses aimed at preventing and controlling infectious diseases within hospitals.This paper examines the role of medical data in the early identification of infectious diseases,explores early warning technologies for infectious disease recognition,and assesses monitoring and early warning mechanisms for infectious diseases.We propose that hospitals adopt novel multidimensional early warning technologies to mine and analyze medical data from various systems,in compliance with national strategies to integrate clinical treatment and disease prevention.Furthermore,hospitals should establish institution-specific,clinical-based early warning models for infectious diseases to actively monitor early signals and enhance preparedness for infectious disease prevention and control.
文摘A significant portion of Landslide Early Warning Systems (LEWS) relies on the definition of operational thresholds and the monitoring of cumulative rainfall for alert issuance. These thresholds can be obtained in various ways, but most often they are based on previous landslide data. This approach introduces several limitations. For instance, there is a requirement for the location to have been previously monitored in some way to have this type of information recorded. Another significant limitation is the need for information regarding the location and timing of incidents. Despite the current ease of obtaining location information (GPS, drone images, etc.), the timing of the event remains challenging to ascertain for a considerable portion of landslide data. Concerning rainfall monitoring, there are multiple ways to consider it, for instance, examining accumulations over various intervals (1 h, 6 h, 24 h, 72 h), as well as in the calculation of effective rainfall, which represents the precipitation that actually infiltrates the soil. However, in the vast majority of cases, both the thresholds and the rain monitoring approach are defined manually and subjectively, relying on the operators’ experience. This makes the process labor-intensive and time-consuming, hindering the establishment of a truly standardized and rapidly scalable methodology on a large scale. In this work, we propose a Landslides Early Warning System (LEWS) based on the concept of rainfall half-life and the determination of thresholds using Cluster Analysis and data inversion. The system is designed to be applied in extensive monitoring networks, such as the one utilized by Cemaden, Brazil’s National Center for Monitoring and Early Warning of Natural Disasters.
文摘The monitoring and warning of urban rail transit is the core of operation management, and the breadth and depth of the monitoring range directly affect the quality of urban rail transit operation. For the current domestic monitoring system, most of the critical equipments and technologies are introduced from abroad;it is diseconomy, and also causes hidden danger. Realizing the localization of monitoring and early warning system is imperative. Based on the analysis of the present situation of urban rail transit operation safety at home and abroad, the paper proposes to use integrated technology to design basic framework of monitoring and warning system of urban rail train, and puts forward the critical technologies to realize the system. Compared with the existing monitoring system, the integrated monitoring system has the characteristics of wide monitoring range, clear division of labor, centralized management, coordination and integration operation and intelligent management, and embodies the concept of people-oriented. It has scientific significance for future construction of domestic Integrated Monitoring and Early Warning System (IMEWS) of urban rail transit.
基金funded by State Grid Shandong Electric Power Company Technology Project(520626220110).
文摘With the increasing penetration of renewable energy in power system,renewable energy power ramp events(REPREs),dominated by wind power and photovoltaic power,pose significant threats to the secure and stable operation of power systems.This paper presents an early warning method for REPREs based on long short-term memory(LSTM)network and fuzzy logic.First,the warning levels of REPREs are defined by assessing the control costs of various power control measures.Then,the next 4-h power support capability of external grid is estimated by a tie line power predictionmodel,which is constructed based on the LSTMnetwork.Finally,considering the risk attitudes of dispatchers,fuzzy rules are employed to address the boundary value attribution of the early warning interval,improving the rationality of power ramp event early warning.Simulation results demonstrate that the proposed method can generate reasonable early warning levels for REPREs,guiding decision-making for control strategy.
基金Supported by Huzhou Science and Technology Program(2013GY06)Research Project of Huzhou Municipal Meteorological Bureau(hzqx201602)
文摘Based on the needs of characteristic agricultural production for meteorological services in Huzhou City,we use C# programming language to develop the meteorological disaster monitoring and early warning platform for characteristic agriculture in Huzhou City. This platform integrates the functions of meteorological and agricultural information monitoring,disaster identification and early warning,fine weather forecast product display,and data query and management,which effectively enhances the capacity of meteorological disaster monitoring and early warning for characteristic agriculture in Huzhou City,and provides strong technical support for the meteorological and agricultural departments in the agricultural meteorological services.