Photoelectrocatalytic seawater splitting is a promising low-cost method to produce green hydrogen in a large scale.The effects of Cl^(-)ions in seawater on the performance of a photoanode have been reported in previou...Photoelectrocatalytic seawater splitting is a promising low-cost method to produce green hydrogen in a large scale.The effects of Cl^(-)ions in seawater on the performance of a photoanode have been reported in previous studies.However,few researches have been done on the roles of Cl^(-)ions in a photocathode.Herein,for the first time,we find that Cl^(-)ions in the electrolyte improve the photocurrent of a Si/In_(2)S_(3) photocathode by 50% at-0.6 V_(RHE).An in-situ X-ray photoelectron spectroscopy(XPS)characterization combined with the time-of-flight secondary-ion mass spectrometry by simulating photoelectrochemical conditions was used to investigate the interface charge transfer mechanism.The results suggest that there is an In_(2)^(+3)S_(3-x)(OH)_(2x)layer on the surface of In_(2)S_(3) in the phosphate buffer solution(PBS)electrolyte,which plays a role as an interface charge transfer mediator in the Si/In_(2)S_(3) photocathode.The In_(2)^(+3)S_(3-x)(OH)_(2x)surface layer becomes In_(2)^(+3)S_(3-x)(Cl)_(2x)in the PBS electrolyte with NaCl and accelerates the charge transfer rate at the In_(2)S_(3)/electrolyte interface.These results offer a new concept of regulating interface charge transfer mediator to enhance the performance of photoelectrocatalytic seawater splitting for hydrogen production.展开更多
基金supported by the National Natural Science Foundation of China(22279052)the China Postdoctoral Science Foundation(2023M741613)。
文摘Photoelectrocatalytic seawater splitting is a promising low-cost method to produce green hydrogen in a large scale.The effects of Cl^(-)ions in seawater on the performance of a photoanode have been reported in previous studies.However,few researches have been done on the roles of Cl^(-)ions in a photocathode.Herein,for the first time,we find that Cl^(-)ions in the electrolyte improve the photocurrent of a Si/In_(2)S_(3) photocathode by 50% at-0.6 V_(RHE).An in-situ X-ray photoelectron spectroscopy(XPS)characterization combined with the time-of-flight secondary-ion mass spectrometry by simulating photoelectrochemical conditions was used to investigate the interface charge transfer mechanism.The results suggest that there is an In_(2)^(+3)S_(3-x)(OH)_(2x)layer on the surface of In_(2)S_(3) in the phosphate buffer solution(PBS)electrolyte,which plays a role as an interface charge transfer mediator in the Si/In_(2)S_(3) photocathode.The In_(2)^(+3)S_(3-x)(OH)_(2x)surface layer becomes In_(2)^(+3)S_(3-x)(Cl)_(2x)in the PBS electrolyte with NaCl and accelerates the charge transfer rate at the In_(2)S_(3)/electrolyte interface.These results offer a new concept of regulating interface charge transfer mediator to enhance the performance of photoelectrocatalytic seawater splitting for hydrogen production.