Safety monitoring and stability analysis of high slopes are important for high dam construction in high mountainous regions or precipitous gorges. In this paper, deformation characteristics of toppling block at upper ...Safety monitoring and stability analysis of high slopes are important for high dam construction in high mountainous regions or precipitous gorges. In this paper, deformation characteristics of toppling block at upper abutment, deforming tensile rip wedge in the middle part and deep fractures are comprehensively analyzed based on the geological conditions, construction methods and monitoring results of left abutment slope in Jinping Ⅰ hydropower station. Safety analyses of surface and shallow-buried rock masses and the corresponding anchorage system are presented. The monitoring results indicate that the global stability of the large wedge block in the left abutment is effectively under control, and the abutment slope is stable in a global sense. After the completion of excavation, the deformations of toppling block at the top of the slope and deep fracture zone continue at a very low rate, which can be explained as 'rock mass creep'. Further monitoring and analysis are needed.展开更多
Reasonable site selection, blocking to meet design standards, interception and drainage and other protective measures are the basic conditions for not causing disaster in slag disposal site. A hydropower station is lo...Reasonable site selection, blocking to meet design standards, interception and drainage and other protective measures are the basic conditions for not causing disaster in slag disposal site. A hydropower station is located in mountainous area, the amount of slag abandoned is large, the grade of slag disposal field is high, and the site selection is difficult. On the basis of in Situ deformation monitoring, the slope stability of slag disposal site is calculated by Swedish arc method through the analysis of the scale, grade, site selection, surrounding environment, cut and discharge, blocking and protection design standards of slag disposal site. Under normal and abnormal operating conditions, the slope stability of slag disposal site meets the requirements of the code, and the results of in Situ deformation monitoring verify the calculation results of slope stability of slag disposal site by Swedish circular arc method.展开更多
The Jinping I hydropower station is a huge water conservancy project consisting of the highest concrete arch dam to date in the world and a highly complex and large underground powerhouse cavern. It is located on the ...The Jinping I hydropower station is a huge water conservancy project consisting of the highest concrete arch dam to date in the world and a highly complex and large underground powerhouse cavern. It is located on the right bank with extremely high in-situ stress and a few discontinuities observed in surrounding rock masses. The problems of rock mass deformation and failure result in considerable challenges related to project design and construction and have raised a wide range of concerns in the fields of rock mechanics and engineering. During the excavation of underground caverns, high in-situ stress and relatively low rock mass strength in combination with large excavation dimensions lead to large deformation of the surrounding rock mass and support. Existing experiences in excavation and support cannot deal with the large deformation of rock mass effectively, and further studies are needed. In this paper, the geological conditions, layout of caverns, and design of excavation and support are first introduced, and then detailed analyses of deformation and failure characteristics of rocks are presented. Based on this, the mechanisms of deformation and failure are discussed, and the support adjustments for controlling rock large deformation and subsequent excavation procedures are proposed. Finally, the effectiveness of support and excavation adjustments to maintain the stability of the rock mass is verified. The measures for controlling the large deformation of surrounding rocks enrich the practical experiences related to the design and construction of large underground openings, and the construction of caverns in the Jinping I hydropower station provides a good case study of large-scale excavation in highly stressed ground with complex geological structures, as well as a reference case for research on rock mechanics.展开更多
For the evaluation of construction quality and the verification of the design of water conservancy and hydropower engineering projects, and especially for the control of dam safety operation behavior, safety monitorin...For the evaluation of construction quality and the verification of the design of water conservancy and hydropower engineering projects, and especially for the control of dam safety operation behavior, safety monitoring sensors are employed in a majority of engineering projects. These sensors are used to monitor the project during the dam construction and operation periods, and play an important role in reservoir safety operation and producing benefits. With the changing of operating environments and run-time of projects, there are some factors affecting the operation and management of projects, such as a certain amount of damaged sensors and instability of the measured data. Therefore, it is urgent to evaluate existing safety monitoring sensors in water conservancy and hydropower engineering projects. However, there are neither standards nor evaluation guidelines at present. Based on engineering practice, this study examined some key techniques for the evaluation of safety monitoring sensors, including the evaluation process of the safety monitoring system, on-site detection methods of two typical pieces of equipment, the differential resistor sensor and vibrating wire sensor, the on-site detection methods of communication cable faults, and a validity test of the sensor measured data. These key techniques were applied in the Xiaolangdi Water Control Project and Xiaoxi Hydropower Project. The results show that the measured data of a majority of sensors are reliable and reasonable, and can reasonably reflect the structural change behavior in the project operating process, indicating that the availabilities of the safety monitoring sensors of the two projects are high展开更多
The simple gate control system which is made of traditional manual or proximity switch cannot meet the requirements of connecting with the computer monitoring system of hydropower station, it must be reformed. On the ...The simple gate control system which is made of traditional manual or proximity switch cannot meet the requirements of connecting with the computer monitoring system of hydropower station, it must be reformed. On the basis of the integrated analysis for small hydropower station, the paper discussed the singlechip as the core to realize the methods of gate automatic control system in small hydropower station. The designs for hardware and software of gate control system were introduced. And the control system was reformed from customary manual control to computer automatic control. The simulation experiment shows that this scheme is feasible.展开更多
According to the construction project of the crustal deformation mobile monitoring network in the cascade hydropower stations built in the lower reaches of Jinsha River,this paper analyzes the design ideas and layout ...According to the construction project of the crustal deformation mobile monitoring network in the cascade hydropower stations built in the lower reaches of Jinsha River,this paper analyzes the design ideas and layout principles of crustal deformation mobile monitoring used in the monitoring of reservoir induced earthquakes. This paper introduces three types of monitoring networks used in the Xiluodu reservoir and Xiangjiaba reservoir, as well as the work already undertaken,in order to provide a kind of reference for the related engineering construction and comprehensive monitoring of reservoir induced earthquakes.展开更多
With consideration of the special hydrogeological conditions and layout characteristics of the hydraulic structures, the seepage control measures of dam abutment and underground powerhouse on the right bank of JinPing...With consideration of the special hydrogeological conditions and layout characteristics of the hydraulic structures, the seepage control measures of dam abutment and underground powerhouse on the right bank of JinPing-I hydropower station is drawn up. Based on the three dimensional finite element analysis of seepage control with dry area virtual flow constant mesh analysis method, the rationality of the seepage control measures of dam abutment and underground powerhouse has been verified and the key factors affecting the effect of seepage have been compared. In combination with the curtain of dam abutment, the curtain of underground powerhouse is reasonable. The results showed that the steel liner of penstock after the curtain is necessary.展开更多
Isolated operation of hydropower stations on Wujinag River was seen disadvantages of low rate of water utilization and much loss of electricity caused by abandoned water during low load periods. To tackle the problem,...Isolated operation of hydropower stations on Wujinag River was seen disadvantages of low rate of water utilization and much loss of electricity caused by abandoned water during low load periods. To tackle the problem, centralized control over cascade hydropower stations is practiced with a considerable economic benef it gained.展开更多
One of the major factors inhibiting the construction of deep underground projects is the risk posed by rockbursts.A study was conducted on the access tunnel of the Shuangjiangkou hydropower station to determine the ev...One of the major factors inhibiting the construction of deep underground projects is the risk posed by rockbursts.A study was conducted on the access tunnel of the Shuangjiangkou hydropower station to determine the evolutionary mechanism of microfractures within the surrounding rock mass during rockburst development and develop a rockburst warning model.The study area was chosen through the combination of field studies with an analysis of the spatial and temporal distribution of microseismic(MS)events.The moment tensor inversion method was adopted to study rockburst mechanism,and a dynamic Bayesian network(DBN)was applied to investigating the sensitivity of MS source parameters for rockburst warnings.A MS multivariable rockburst warning model was proposed and validated using two case studies.The results indicate that fractures in the surrounding rock mass during the development of strain-structure rockbursts initially show shear failure and are then followed by tensile failure.The effectiveness of the DBN-based rockburst warning model was demonstrated using self-validation and K-fold cross-validation.Moment magnitude and source radius are the most sensitive factors based on an investigation of the influence on the parent and child nodes in the model,which can serve as important standards for rockburst warnings.The proposed rockburst warning model was found to be effective when applied to two actual projects.展开更多
Developer and owner:China Three Gorges Corporation(CTG)Engineering management:China Three Gorges Projects Development Corporation(CTGPC)Designer:Chengdu Engineering Corporation Co.,Ltd.,Power
文摘Safety monitoring and stability analysis of high slopes are important for high dam construction in high mountainous regions or precipitous gorges. In this paper, deformation characteristics of toppling block at upper abutment, deforming tensile rip wedge in the middle part and deep fractures are comprehensively analyzed based on the geological conditions, construction methods and monitoring results of left abutment slope in Jinping Ⅰ hydropower station. Safety analyses of surface and shallow-buried rock masses and the corresponding anchorage system are presented. The monitoring results indicate that the global stability of the large wedge block in the left abutment is effectively under control, and the abutment slope is stable in a global sense. After the completion of excavation, the deformations of toppling block at the top of the slope and deep fracture zone continue at a very low rate, which can be explained as 'rock mass creep'. Further monitoring and analysis are needed.
文摘Reasonable site selection, blocking to meet design standards, interception and drainage and other protective measures are the basic conditions for not causing disaster in slag disposal site. A hydropower station is located in mountainous area, the amount of slag abandoned is large, the grade of slag disposal field is high, and the site selection is difficult. On the basis of in Situ deformation monitoring, the slope stability of slag disposal site is calculated by Swedish arc method through the analysis of the scale, grade, site selection, surrounding environment, cut and discharge, blocking and protection design standards of slag disposal site. Under normal and abnormal operating conditions, the slope stability of slag disposal site meets the requirements of the code, and the results of in Situ deformation monitoring verify the calculation results of slope stability of slag disposal site by Swedish circular arc method.
文摘The Jinping I hydropower station is a huge water conservancy project consisting of the highest concrete arch dam to date in the world and a highly complex and large underground powerhouse cavern. It is located on the right bank with extremely high in-situ stress and a few discontinuities observed in surrounding rock masses. The problems of rock mass deformation and failure result in considerable challenges related to project design and construction and have raised a wide range of concerns in the fields of rock mechanics and engineering. During the excavation of underground caverns, high in-situ stress and relatively low rock mass strength in combination with large excavation dimensions lead to large deformation of the surrounding rock mass and support. Existing experiences in excavation and support cannot deal with the large deformation of rock mass effectively, and further studies are needed. In this paper, the geological conditions, layout of caverns, and design of excavation and support are first introduced, and then detailed analyses of deformation and failure characteristics of rocks are presented. Based on this, the mechanisms of deformation and failure are discussed, and the support adjustments for controlling rock large deformation and subsequent excavation procedures are proposed. Finally, the effectiveness of support and excavation adjustments to maintain the stability of the rock mass is verified. The measures for controlling the large deformation of surrounding rocks enrich the practical experiences related to the design and construction of large underground openings, and the construction of caverns in the Jinping I hydropower station provides a good case study of large-scale excavation in highly stressed ground with complex geological structures, as well as a reference case for research on rock mechanics.
基金supported by the National Natural Science Foundation of China(Grants No.51179108and50909066)the Key Research Foundation of Nanjing Hydraulic Research Institute(Grant No.Y711007)
文摘For the evaluation of construction quality and the verification of the design of water conservancy and hydropower engineering projects, and especially for the control of dam safety operation behavior, safety monitoring sensors are employed in a majority of engineering projects. These sensors are used to monitor the project during the dam construction and operation periods, and play an important role in reservoir safety operation and producing benefits. With the changing of operating environments and run-time of projects, there are some factors affecting the operation and management of projects, such as a certain amount of damaged sensors and instability of the measured data. Therefore, it is urgent to evaluate existing safety monitoring sensors in water conservancy and hydropower engineering projects. However, there are neither standards nor evaluation guidelines at present. Based on engineering practice, this study examined some key techniques for the evaluation of safety monitoring sensors, including the evaluation process of the safety monitoring system, on-site detection methods of two typical pieces of equipment, the differential resistor sensor and vibrating wire sensor, the on-site detection methods of communication cable faults, and a validity test of the sensor measured data. These key techniques were applied in the Xiaolangdi Water Control Project and Xiaoxi Hydropower Project. The results show that the measured data of a majority of sensors are reliable and reasonable, and can reasonably reflect the structural change behavior in the project operating process, indicating that the availabilities of the safety monitoring sensors of the two projects are high
文摘The simple gate control system which is made of traditional manual or proximity switch cannot meet the requirements of connecting with the computer monitoring system of hydropower station, it must be reformed. On the basis of the integrated analysis for small hydropower station, the paper discussed the singlechip as the core to realize the methods of gate automatic control system in small hydropower station. The designs for hardware and software of gate control system were introduced. And the control system was reformed from customary manual control to computer automatic control. The simulation experiment shows that this scheme is feasible.
基金sponsored by the Key Construction Program of the Three Gorges Project,China
文摘According to the construction project of the crustal deformation mobile monitoring network in the cascade hydropower stations built in the lower reaches of Jinsha River,this paper analyzes the design ideas and layout principles of crustal deformation mobile monitoring used in the monitoring of reservoir induced earthquakes. This paper introduces three types of monitoring networks used in the Xiluodu reservoir and Xiangjiaba reservoir, as well as the work already undertaken,in order to provide a kind of reference for the related engineering construction and comprehensive monitoring of reservoir induced earthquakes.
文摘With consideration of the special hydrogeological conditions and layout characteristics of the hydraulic structures, the seepage control measures of dam abutment and underground powerhouse on the right bank of JinPing-I hydropower station is drawn up. Based on the three dimensional finite element analysis of seepage control with dry area virtual flow constant mesh analysis method, the rationality of the seepage control measures of dam abutment and underground powerhouse has been verified and the key factors affecting the effect of seepage have been compared. In combination with the curtain of dam abutment, the curtain of underground powerhouse is reasonable. The results showed that the steel liner of penstock after the curtain is necessary.
文摘Isolated operation of hydropower stations on Wujinag River was seen disadvantages of low rate of water utilization and much loss of electricity caused by abandoned water during low load periods. To tackle the problem, centralized control over cascade hydropower stations is practiced with a considerable economic benef it gained.
基金funding support from the National Natural Science Foundation of China(Grant No.42177143 and 51809221)the Science Foundation for Distinguished Young Scholars of Sichuan Province,China(Grant No.2020JDJQ0011).
文摘One of the major factors inhibiting the construction of deep underground projects is the risk posed by rockbursts.A study was conducted on the access tunnel of the Shuangjiangkou hydropower station to determine the evolutionary mechanism of microfractures within the surrounding rock mass during rockburst development and develop a rockburst warning model.The study area was chosen through the combination of field studies with an analysis of the spatial and temporal distribution of microseismic(MS)events.The moment tensor inversion method was adopted to study rockburst mechanism,and a dynamic Bayesian network(DBN)was applied to investigating the sensitivity of MS source parameters for rockburst warnings.A MS multivariable rockburst warning model was proposed and validated using two case studies.The results indicate that fractures in the surrounding rock mass during the development of strain-structure rockbursts initially show shear failure and are then followed by tensile failure.The effectiveness of the DBN-based rockburst warning model was demonstrated using self-validation and K-fold cross-validation.Moment magnitude and source radius are the most sensitive factors based on an investigation of the influence on the parent and child nodes in the model,which can serve as important standards for rockburst warnings.The proposed rockburst warning model was found to be effective when applied to two actual projects.
文摘Developer and owner:China Three Gorges Corporation(CTG)Engineering management:China Three Gorges Projects Development Corporation(CTGPC)Designer:Chengdu Engineering Corporation Co.,Ltd.,Power