Tool condition monitoring(TCM)is a key technology for intelligent manufacturing.The objective is to monitor the tool operation status and detect tool breakage so that the tool can be changed in time to avoid significa...Tool condition monitoring(TCM)is a key technology for intelligent manufacturing.The objective is to monitor the tool operation status and detect tool breakage so that the tool can be changed in time to avoid significant damage to workpieces and reduce manufacturing costs.Recently,an innovative TCM approach based on sensor data modelling and model frequency analysis has been proposed.Different from traditional signal feature-based monitoring,the data from sensors are utilized to build a dynamic process model.Then,the nonlinear output frequency response functions,a concept which extends the linear system frequency response function to the nonlinear case,over the frequency range of the tooth passing frequency of the machining process are extracted to reveal tool health conditions.In order to extend the novel sensor data modelling and model frequency analysis to unsupervised condition monitoring of cutting tools,in the present study,a multivariate control chart is proposed for TCM based on the frequency domain properties of machining processes derived from the innovative sensor data modelling and model frequency analysis.The feature dimension is reduced by principal component analysis first.Then the moving average strategy is exploited to generate monitoring variables and overcome the effects of noises.The milling experiments of titanium alloys are conducted to verify the effectiveness of the proposed approach in detecting excessive flank wear of solid carbide end mills.The results demonstrate the advantages of the new approach over conventional TCM techniques and its potential in industrial applications.展开更多
Continuous glucose monitoring(CGM)is a popular technology among the diabetic population,especially in patients with type 1 diabetes and those with type 2 diabetes treated with insulin.The American Diabetes Association...Continuous glucose monitoring(CGM)is a popular technology among the diabetic population,especially in patients with type 1 diabetes and those with type 2 diabetes treated with insulin.The American Diabetes Association recommends standardization of CGM reports with visual cues,such as the ambulatory glucose profile.Nevertheless,interpreting this report requires training and time for CGM to be cost-efficient.In this work it has been proposed to incorporate Japanese candlestick charts in glucose monitoring.These graphs are used in price analysis in financial markets and are easier to view.Each candle provides extra information to make prudent decisions since it reports the opening,maximum,minimum and closing glucose levels of the chosen time frame,usually the daily one.The Japanese candlestick chart is an interesting tool to be considered in glucose control.This graphic representation allows identification of glucose trends easily through the colors of the candles and maximum and minimum glucose values.展开更多
Objective:To define the alert levels for the total number of COVID-19 cases derived by using quantile functions to monitor COVID-19 outbreaks via an exponentially weighted moving-average(EWMA)control chart based on th...Objective:To define the alert levels for the total number of COVID-19 cases derived by using quantile functions to monitor COVID-19 outbreaks via an exponentially weighted moving-average(EWMA)control chart based on the first hitting time of the total number of COVID-19 cases following a symmetric logistic growth curve.Methods:The cumulative distribution function of the time for the total number of COVID-19 cases was used to construct a quantile function for classifying COVID-19 alert levels.The EWMA control chart control limits for monitoring a COVID-19 outbreak were formulated by applying the delta method and the sample mean and variance method.Samples were selected from countries and region including Thailand,Singapore,Vietnam,and Hong Kong to generate the total number of COVID-19 cases from February 15,2020 to December 16,2020,all of which followed symmetric patterns.A comparison of the two methods was made by applying them to a EWMA control chart based on the first hitting time for monitoring the COVID-19 outbreak in the sampled countries and region.Results:The optimal first hitting times for the EWMA control chart for monitoring COVID-19 outbreaks in Thailand,Singapore,Vietnam,and Hong Kong were approximately 280,208,286,and 298 days,respectively.Conclusions:The findings show that the sample mean and variance method can detect the first hitting time better than the delta method.Moreover,the COVID-19 alert levels can be defined into four stages for monitoring COVID-19 situation,which help the authorities to enact policies that monitor,control,and protect the population from a COVID-19 outbreak.展开更多
In this article, we propose two control charts namely, the “Multivariate Group Runs’ (MV-GR-M)” and the “Multivariate Modified Group Runs’ (MV-MGR-M)” control charts, based on the multivariate normal processes, ...In this article, we propose two control charts namely, the “Multivariate Group Runs’ (MV-GR-M)” and the “Multivariate Modified Group Runs’ (MV-MGR-M)” control charts, based on the multivariate normal processes, for monitoring the process mean vector. Methods to obtain the design parameters and operations of these control charts are discussed. Performances of the proposed charts are compared with some existing control charts. It is verified that, the proposed charts give a significant reduction in the out-of-control “Average Time to Signal” (ATS) in the zero state, as well in the steady state compared to the Hotelling’s T2 and the synthetic T2 control charts.展开更多
A new method using discriminant analysis and control charts is proposed for monitoring multivariate process operations more reliably.Fisher discriminant analysis (FDA) is used to derive a feature discriminant direct...A new method using discriminant analysis and control charts is proposed for monitoring multivariate process operations more reliably.Fisher discriminant analysis (FDA) is used to derive a feature discriminant direction (FDD) between each normal and fault operations,and each FDD thus decided constructs the feature space of each fault operation.Individuals control charts (XmR charts) are used to monitor multivariate processes using the process data projected onto feature spaces.Upper control limit (UCL) and lower control limit (LCL) on each feature space from normal process operation are calculated for XmR charts,and are used to distinguish fault from normal.A variation trend on an XmR chart reveals the type of relevant fault operation.Applications to Tennessee Eastman simulation processes show that this proposed method can result in better monitoring performance than principal component analysis (PCA)-based methods and can better identify step type faults on XmR charts.展开更多
In modern industry,process monitoring plays a significant role in improving the quality of process conduct.With the higher dimensional of the industrial data,the monitoring methods based on the latent variables have b...In modern industry,process monitoring plays a significant role in improving the quality of process conduct.With the higher dimensional of the industrial data,the monitoring methods based on the latent variables have been widely applied in order to decrease the wasting of the industrial database.Nevertheless,these latent variables do not usually follow the Gaussian distribution and thus perform unsuitable when applying some statistics indices,especially the T^(2) on them.Variational AutoEncoders(VAE),an unsupervised deep learning algorithm using the hierarchy study method,has the ability to make the latent variables follow the Gaussian distribution.The partial least squares(PLS)are used to obtain the information between the dependent variables and independent variables.In this paper,we will integrate these two methods and make a comparison with other methods.The superiority of this proposed method will be verified by the simulation and the Trimethylchlorosilane purification process in terms of the multivariate control charts.展开更多
In order to accurately test gas concentration and effectively pre-waming when the gas concentration over-limited on work face, used the high-performance and low prices SCM and the low-cost and high transfer efficiency...In order to accurately test gas concentration and effectively pre-waming when the gas concentration over-limited on work face, used the high-performance and low prices SCM and the low-cost and high transfer efficiency bluetooth technology to forecast the gas concentration in real time. The data tested by SCM, then got the corresponding mathematical model of the data. Put forward the idea of using fuzzy structured element theory to dynamic forecast the gas concentration, analyzed the features in abnormal-effusing on work face and judge whether there was the possibility of abnormal gas-effusion. Simulation results show that mathematical model of this system about gas concentration is correct. This system changes coal mine monitoring system's traditional way of after-alarming into early-warning, and thus enhances its feasibility.展开更多
文摘Tool condition monitoring(TCM)is a key technology for intelligent manufacturing.The objective is to monitor the tool operation status and detect tool breakage so that the tool can be changed in time to avoid significant damage to workpieces and reduce manufacturing costs.Recently,an innovative TCM approach based on sensor data modelling and model frequency analysis has been proposed.Different from traditional signal feature-based monitoring,the data from sensors are utilized to build a dynamic process model.Then,the nonlinear output frequency response functions,a concept which extends the linear system frequency response function to the nonlinear case,over the frequency range of the tooth passing frequency of the machining process are extracted to reveal tool health conditions.In order to extend the novel sensor data modelling and model frequency analysis to unsupervised condition monitoring of cutting tools,in the present study,a multivariate control chart is proposed for TCM based on the frequency domain properties of machining processes derived from the innovative sensor data modelling and model frequency analysis.The feature dimension is reduced by principal component analysis first.Then the moving average strategy is exploited to generate monitoring variables and overcome the effects of noises.The milling experiments of titanium alloys are conducted to verify the effectiveness of the proposed approach in detecting excessive flank wear of solid carbide end mills.The results demonstrate the advantages of the new approach over conventional TCM techniques and its potential in industrial applications.
文摘Continuous glucose monitoring(CGM)is a popular technology among the diabetic population,especially in patients with type 1 diabetes and those with type 2 diabetes treated with insulin.The American Diabetes Association recommends standardization of CGM reports with visual cues,such as the ambulatory glucose profile.Nevertheless,interpreting this report requires training and time for CGM to be cost-efficient.In this work it has been proposed to incorporate Japanese candlestick charts in glucose monitoring.These graphs are used in price analysis in financial markets and are easier to view.Each candle provides extra information to make prudent decisions since it reports the opening,maximum,minimum and closing glucose levels of the chosen time frame,usually the daily one.The Japanese candlestick chart is an interesting tool to be considered in glucose control.This graphic representation allows identification of glucose trends easily through the colors of the candles and maximum and minimum glucose values.
基金funding by King Mongkut’s University of Technology North Bangkok Contract no.KMUTNB-61-KNOW-014
文摘Objective:To define the alert levels for the total number of COVID-19 cases derived by using quantile functions to monitor COVID-19 outbreaks via an exponentially weighted moving-average(EWMA)control chart based on the first hitting time of the total number of COVID-19 cases following a symmetric logistic growth curve.Methods:The cumulative distribution function of the time for the total number of COVID-19 cases was used to construct a quantile function for classifying COVID-19 alert levels.The EWMA control chart control limits for monitoring a COVID-19 outbreak were formulated by applying the delta method and the sample mean and variance method.Samples were selected from countries and region including Thailand,Singapore,Vietnam,and Hong Kong to generate the total number of COVID-19 cases from February 15,2020 to December 16,2020,all of which followed symmetric patterns.A comparison of the two methods was made by applying them to a EWMA control chart based on the first hitting time for monitoring the COVID-19 outbreak in the sampled countries and region.Results:The optimal first hitting times for the EWMA control chart for monitoring COVID-19 outbreaks in Thailand,Singapore,Vietnam,and Hong Kong were approximately 280,208,286,and 298 days,respectively.Conclusions:The findings show that the sample mean and variance method can detect the first hitting time better than the delta method.Moreover,the COVID-19 alert levels can be defined into four stages for monitoring COVID-19 situation,which help the authorities to enact policies that monitor,control,and protect the population from a COVID-19 outbreak.
文摘In this article, we propose two control charts namely, the “Multivariate Group Runs’ (MV-GR-M)” and the “Multivariate Modified Group Runs’ (MV-MGR-M)” control charts, based on the multivariate normal processes, for monitoring the process mean vector. Methods to obtain the design parameters and operations of these control charts are discussed. Performances of the proposed charts are compared with some existing control charts. It is verified that, the proposed charts give a significant reduction in the out-of-control “Average Time to Signal” (ATS) in the zero state, as well in the steady state compared to the Hotelling’s T2 and the synthetic T2 control charts.
基金Sponsored by the Scientific Research Foundation for Returned Overseas Chinese Scholars of the Ministry of Education of China
文摘A new method using discriminant analysis and control charts is proposed for monitoring multivariate process operations more reliably.Fisher discriminant analysis (FDA) is used to derive a feature discriminant direction (FDD) between each normal and fault operations,and each FDD thus decided constructs the feature space of each fault operation.Individuals control charts (XmR charts) are used to monitor multivariate processes using the process data projected onto feature spaces.Upper control limit (UCL) and lower control limit (LCL) on each feature space from normal process operation are calculated for XmR charts,and are used to distinguish fault from normal.A variation trend on an XmR chart reveals the type of relevant fault operation.Applications to Tennessee Eastman simulation processes show that this proposed method can result in better monitoring performance than principal component analysis (PCA)-based methods and can better identify step type faults on XmR charts.
文摘In modern industry,process monitoring plays a significant role in improving the quality of process conduct.With the higher dimensional of the industrial data,the monitoring methods based on the latent variables have been widely applied in order to decrease the wasting of the industrial database.Nevertheless,these latent variables do not usually follow the Gaussian distribution and thus perform unsuitable when applying some statistics indices,especially the T^(2) on them.Variational AutoEncoders(VAE),an unsupervised deep learning algorithm using the hierarchy study method,has the ability to make the latent variables follow the Gaussian distribution.The partial least squares(PLS)are used to obtain the information between the dependent variables and independent variables.In this paper,we will integrate these two methods and make a comparison with other methods.The superiority of this proposed method will be verified by the simulation and the Trimethylchlorosilane purification process in terms of the multivariate control charts.
文摘In order to accurately test gas concentration and effectively pre-waming when the gas concentration over-limited on work face, used the high-performance and low prices SCM and the low-cost and high transfer efficiency bluetooth technology to forecast the gas concentration in real time. The data tested by SCM, then got the corresponding mathematical model of the data. Put forward the idea of using fuzzy structured element theory to dynamic forecast the gas concentration, analyzed the features in abnormal-effusing on work face and judge whether there was the possibility of abnormal gas-effusion. Simulation results show that mathematical model of this system about gas concentration is correct. This system changes coal mine monitoring system's traditional way of after-alarming into early-warning, and thus enhances its feasibility.