Pipeline network of oil fi eld water is established on the basis of GIS geographic information and SCADA platform, and monitorthe running state of water supply system in oil fi eld mining area in real time through dat...Pipeline network of oil fi eld water is established on the basis of GIS geographic information and SCADA platform, and monitorthe running state of water supply system in oil fi eld mining area in real time through data acquisition, instrument measurement and control,wireless network, water quantity, water pressure and other on-line monitoring equipment. The water supply system is formed, and the informationof mass water supply system is analyzed and processed in a timely manner. The system manages the entire production, management and serviceprocesses of the water supply system in a dynamic manner in order to ensure water supply safety management, and realize the modernization,intelligence and information mode operation of the water supply system in the mining area.展开更多
This paper presents a novel parallel implementation technology for wave-based structural health monitoring (SHM) in laminated composite plates. The wavelet-based B-spline wavelet on he interval (BSWI) element is cons...This paper presents a novel parallel implementation technology for wave-based structural health monitoring (SHM) in laminated composite plates. The wavelet-based B-spline wavelet on he interval (BSWI) element is constructed according to Hamilton’s principle, and the element by element algorithm is parallelly executed on graphics processing unit (GPU) using compute unified device architecture (CUDA) to get the responses in full wave field accurately. By means of the Fourier spectral analysis method,the Mindlin plate theory is selected for wave modeling of laminated composite plates while the Kirchhoff plate theory predicts unreasonably phase and group velocities. Numerical examples involving wave propagation in laminated composite plates without and with crack are performed and discussed in detail. The parallel implementation on GPU is accelerated 146 times comparing with the same wave motion problem executed on central processing unit (CPU). The validity and accuracy of the proposed parallel implementation are also demonstrated by comparing with conventional finite element method (FEM) and the computation time has been reduced from hours to minutes. The damage size and location have been successfully determined according to wave propagation results based on delay-and-sum (DAS). The results show that the proposed parallel implementation of wavelet finite element method (WFEM) is very appropriate and efficient for wave-based SHM in laminated composite plates.展开更多
文摘Pipeline network of oil fi eld water is established on the basis of GIS geographic information and SCADA platform, and monitorthe running state of water supply system in oil fi eld mining area in real time through data acquisition, instrument measurement and control,wireless network, water quantity, water pressure and other on-line monitoring equipment. The water supply system is formed, and the informationof mass water supply system is analyzed and processed in a timely manner. The system manages the entire production, management and serviceprocesses of the water supply system in a dynamic manner in order to ensure water supply safety management, and realize the modernization,intelligence and information mode operation of the water supply system in the mining area.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51421004 & 51405369)the National Key Basic Research Program of China (Grant No. 2015CB057400)+1 种基金the China Postdoctoral Science Foundation (Grant No. 2014M560766)the China Scholarship Council,and the Fundamental Research Funds for the Central Universities(Grant No. xjj2014107)
文摘This paper presents a novel parallel implementation technology for wave-based structural health monitoring (SHM) in laminated composite plates. The wavelet-based B-spline wavelet on he interval (BSWI) element is constructed according to Hamilton’s principle, and the element by element algorithm is parallelly executed on graphics processing unit (GPU) using compute unified device architecture (CUDA) to get the responses in full wave field accurately. By means of the Fourier spectral analysis method,the Mindlin plate theory is selected for wave modeling of laminated composite plates while the Kirchhoff plate theory predicts unreasonably phase and group velocities. Numerical examples involving wave propagation in laminated composite plates without and with crack are performed and discussed in detail. The parallel implementation on GPU is accelerated 146 times comparing with the same wave motion problem executed on central processing unit (CPU). The validity and accuracy of the proposed parallel implementation are also demonstrated by comparing with conventional finite element method (FEM) and the computation time has been reduced from hours to minutes. The damage size and location have been successfully determined according to wave propagation results based on delay-and-sum (DAS). The results show that the proposed parallel implementation of wavelet finite element method (WFEM) is very appropriate and efficient for wave-based SHM in laminated composite plates.