Building energy performance is a function of numerous building parameters.In this study,sensitivity analysis on twenty parameters is performed to determine the top three parameters that have the most significant impac...Building energy performance is a function of numerous building parameters.In this study,sensitivity analysis on twenty parameters is performed to determine the top three parameters that have the most significant impact on the energy performance of buildings.Actual data from two fully operational commercial buildings were collected and used to develop a building energy model in the Quick Energy Simulation Tool(eQUEST).The model is calibrated using the Normalized Mean Bias Error(NMBE)and Coefficient of Variation of Root Mean Square Error(CV(RMSE))method.The model satisfies the NMBE and CV(RMSE)criteria set by the American Society of Heating,Refrigeration,and Air-Conditioning(ASHRAE)Guideline 14,Federal Energy Management Program(FEMP),and International Performance Measurement and Verification Protocol(IPMVP)for building energy model calibration.The values of the parameters are varied in two levels,and then the percentage change in output is calculated.Fractional factorial analysis on eight parameters with the highest percentage change in energy performance is performed at two levels in a statistical software JMP.For building A,the top 3 parameters from the percentage change method are:Heating setpoint,cooling setpoint and server room.From fractional factorial design,the top 3 parameters are:heating setpoint(p-value=0.00129),cooling setpoint(p-value=0.00133),and setback control(p-value=0.00317).For building B,the top 3 parameters from both methods are:Server room(pvalue=0.0000),heating setpoint(p-value=0.00014),and cooling setpoint(p-value=0.00035).If the best values for all top three parameters are taken simultaneously,energy efficiency improves by 29%for building A and 35%for building B.展开更多
The heating load simulation models of the residential buildings in Lhasa are established for enhancing the space organization’s adaptability to climate and radiation and improving its energy saving performance.The sp...The heating load simulation models of the residential buildings in Lhasa are established for enhancing the space organization’s adaptability to climate and radiation and improving its energy saving performance.The space organization items a e analyzed for both the existing buildings without insulation and new buildings with good insulation.The items include orientation design,south a d north balcony design,the north and south partition wall’s position design,storey height design and window-wall ratio design.Simulation results show that orientation is the key design element for energy saving design,and adverse orientation can obviouslyincrease heating energy consumption;south and north balconies can reduce winter heating energy consumption;partition walls move to the north,which means that the south room’s big depth design leads to less heating energy consumption,but the effect is not inconspicuous;smaier storey height results in less heating load.For the existing buildings,the window-wall ratio of south side has a balance point for energy saving design in the calculation condition.For the new buildings with good insulation,enlarging the south window-wal ratio can continuously reduce heating energy consumption,but the energy saving rate between models gets smaier.The heating energy consumption comparison study between the common model and optimal space design model demonstrates that the energy saving design can significantly reduce heating energy consumption展开更多
For the carbon-neutral,a multi-carrier renewable energy system(MRES),driven by the wind,solar and geothermal,was considered as an effective solution to mitigate CO2emissions and reduce energy usage in the building sec...For the carbon-neutral,a multi-carrier renewable energy system(MRES),driven by the wind,solar and geothermal,was considered as an effective solution to mitigate CO2emissions and reduce energy usage in the building sector.A proper sizing method was essential for achieving the desired 100%renewable energy system of resources.This paper presented a bi-objective optimization formulation for sizing the MRES using a constrained genetic algorithm(GA)coupled with the loss of power supply probability(LPSP)method to achieve the minimal cost of the system and the reliability of the system to the load real time requirement.An optimization App has been developed in MATLAB environment to offer a user-friendly interface and output the optimized design parameters when given the load demand.A case study of a swimming pool building was used to demonstrate the process of the proposed design method.Compared to the conventional distributed energy system,the MRES is feasible with a lower annual total cost(ATC).Additionally,the ATC decreases as the power supply reliability of the renewable system decreases.There is a decrease of 24%of the annual total cost when the power supply probability is equal to 8%compared to the baseline case with 0%power supply probability.展开更多
To overcome the shortcomings of the energyconsumption prediction models in the application during thedesign stage, a quick prediction model for energy consumptionis proposed based on the decoupling method. Taking typi...To overcome the shortcomings of the energyconsumption prediction models in the application during thedesign stage, a quick prediction model for energy consumptionis proposed based on the decoupling method. Taking typicalresidential and office buildings in hot summer and cold winterzones as research objects, the influence factors on buildingenergy consumption are classified into intrinsic factors andoperational factors on the basis of the heat transfer principle.Then, using the intrinsic factors as the fundamental variablesand operational factors as the modified variables, the quickprediction model for the buildings in typical cold and hot zonesis proposed based on the decoupling method and the accuracyof the proposed model is verified. The results show thatcompared to the simulation results of EnergyPlus, the relativeerror of the prediction model is less than 1.5% ; comparedwith the real operating data of the building, the relative erroris 13.14% in 2011 and 8.56% in 2012 due to the fact that thecoincidence factor becomes larger than the design value about16% in 2011 and 13% in 2012. The finding reveals that theproposed model has the advantages of rapid calculationcompared with EnergyPlus and Design Builder when predictingbuilding energy consumption in building designs. The energyconsumption prediction model is of great practical value inoptimal operation and building designs.展开更多
With rapid economy growth,building energy consumption in China has been gradually increased.The energy consumption and indoor environmental quality of 51 office buildings in Hainan Province,a hot and humid area,were s...With rapid economy growth,building energy consumption in China has been gradually increased.The energy consumption and indoor environmental quality of 51 office buildings in Hainan Province,a hot and humid area,were studied through collection of verified data in site visits and field tests.The result revealed that,electricity accounted for 99.79% of the total energy consumption,natural gas 0.17%,and diesel 0.04%.The air conditioning dominated the energy use with a share of 43.18%,equipment in the particular areas 26.90%,equipment in the office rooms 11.95%,lighting system 8.67%,general service system 7.57%,and miscellaneous items 1.73%.Statistical method including six indicators obtained the energy consumption benchmark with upper limit of 98.31 kW-h/m2 and lower limit of 55.26 kW-h/m2.According to ASHRAE standard(comfortable standard) and GB/T 18883-2002(acceptable standard),the indoor environmental quality of 51 sampled office buildings was classified into three ranks:good,normal and bad.With benchmark of building energy consumption combined with indoor environmental quality,it was found that only 3.92% of sampled buildings can be identified as the best performance buildings with low energy consumption and advanced indoor environmental quality,and the buildings classified into normal level accounted for the maximum ratio.展开更多
In the present article thermal and electrical energy consumptions for different types of buildings are analyzed. The latitude and longitude of the researched area are defined 59?00'N and 26?00'E. According to ...In the present article thermal and electrical energy consumptions for different types of buildings are analyzed. The latitude and longitude of the researched area are defined 59?00'N and 26?00'E. According to K?ppen climate classification the area is located in warm summer continental climate. The study consist 40 residential, 7 educational and 44 public buildings. Three years data for each building type among 2006-2011 was used. Several detailed energy balances are presented for apartment buildings. In addition the different ways of domestic hot water preparation are analyzed for apartment buildings. The school buildings average consumption values are represented in study. Also valuable information of measured electrical energy consumption balance for a new office building is presented. Finally there is included the energy consumption analysis of public buildings.展开更多
Riyadh city is the fastest growing city in Saudi Arabia. The rapid urban growth that happened recently in Riyadh was not based on the traditional urban planning principles, which have been established and applied for ...Riyadh city is the fastest growing city in Saudi Arabia. The rapid urban growth that happened recently in Riyadh was not based on the traditional urban planning principles, which have been established and applied for the city development process. The imported building regulations have created a new urban structures and street patterns. The contemporary urban form in Riyadh city is based mainly on traffic and economic consideration with the neglect of environmental dimensions. This research aims to examine the impacts of building regulations on the thermal performance of residential buildings in Riyadh city, with the ultimate goal of establishing planning guidelines that consider the environmental conditions of the city. The methodology adopted for achieving the aim of this study consists of two phases. First, the literature related to building regulations development in Riyadh, as of 2018, was reviewed. Second, buildings energy simulation was conducted to examine the thermal performance of the typical current status of residential building blocks in Riyadh city, and then several changes to building regulations were made to investigate their impacts on the thermal performance of buildings. The results showed that the impacts of Riyadh building regulations on the thermal performance of residential buildings differ across the evaluated cases. The ratio of building height to street width, urban block street orientation, and building orientation are the main factors affecting thermal performance of buildings within urban block. The study also concludes that adjusting the ratio of building height to the distance between buildings could have a significant impact in reducing cooling loads. This study will help policy makers, planners and designers to investigate the shortcoming in the current building regulations.展开更多
This paper analyzes the shortcomings of ECOTECT simulation software, puts forward the real-time energy consumption monitoring software. According to the structural characteristics of large public buildings, the paper ...This paper analyzes the shortcomings of ECOTECT simulation software, puts forward the real-time energy consumption monitoring software. According to the structural characteristics of large public buildings, the paper proposes the key technology development and the functions of the software platform, and provides RS485 communication code. The research results in this paper have some practical value on energy consumption of large-scale construction monitoring.展开更多
In the context of the new period,the living standards and comfort demands of rural residents are increasing,which promotes the continuous growth of the total energy consumption of rural residential buildings.In this s...In the context of the new period,the living standards and comfort demands of rural residents are increasing,which promotes the continuous growth of the total energy consumption of rural residential buildings.In this study,it estimated the total energy consumption of rural residential buildings in 30 provinces(or cities)in China from 2004 to 2016.Through the division of climate regions of the residential buildings,this paper analyzed the characteristics of changes in the energy structure of residential buildings and the trend of energy consumption from the perspective of the province.Then based on the people s livelihood and from the perspective of development,it came up with some pertinent strategies and recommendations for energy saving and emission reduction in rural residential buildings.展开更多
China is currently going through a phase of rapid mass urbanisation, and it is important to investigate how the growing built environment will cope with climate change, to see how the energy consumption of buildings i...China is currently going through a phase of rapid mass urbanisation, and it is important to investigate how the growing built environment will cope with climate change, to see how the energy consumption of buildings in China will be affected. This is especially important for the fast-growing cities in the north, and around the east and south coasts. This paper aims to study the effects of future climate change on the energy consumption of buildings in the three main climate regions of China, namely the “Cold” region in the north, which includes Beijing;the “Hot Summer Cold Winter” region in the east, which includes cities such as Shanghai and Ningbo;and the “Hot Summer Mild Winter” region in the south, which includes Guangzhou. Using data from the climate model, HadCM3, Test Reference Years are generated for the 2020s, 2050s and 2080s, for various IPCC future scenarios. These are then used to access the energy performance of typical existing buildings, and also the effects of retrofitting them to the standard of the current building codes. It was found that although there are reductions in energy consumption for heating and cooling with retrofitting existing residential buildings to the current standard, the actual effects are very small compared with the extra energy consumption that comes as a result of future climate change. This is especially true for Guangzhou, which currently have very little heating load, so there is little benefit of the reduction in heating demand from climate change. The effects of retrofitting in Beijing are also limited, and only in Ningbo was the effect of retrofitting able to nullify the effects of climate change up to 2020s. More improvements in building standards in all three regions are required to significantly reduce the effects of future climate change, especially to beyond 2020s.展开更多
With the continuous development of science and technology and the gradual improvement of modem building technology, people pay more and more attention to the introduction of advanced technology in architectural design...With the continuous development of science and technology and the gradual improvement of modem building technology, people pay more and more attention to the introduction of advanced technology in architectural design, such as the application of intelligent technology. With the increasingly severe environmental situation, people are increasingly demanding the environmental performance and green performance of buildings. The establishment of ultra-low energy consumption passive buildings has become one of the key construction contents of construction projects. This paper mainly analyzes the design points and architectural forms of related buildings from the perspective of intelligent control.展开更多
School is a special place where students come together to become productive individuals of society,acquire basic skills and acquire citizenship knowledge.With the introduction of the new education system(4+4+4)in Turk...School is a special place where students come together to become productive individuals of society,acquire basic skills and acquire citizenship knowledge.With the introduction of the new education system(4+4+4)in Turkey in 2012-2013,some difficulties occurred in the spatial structure of the schools.After the new system,increasing number of students and decreasing student requirements have been tried to be solved with temporary solutions.At the same time that millions of students studying in primary schools all over Turkey have the same architectural feature as one type of architectural school project,regardless of the geographical and social situation began to be implemented in all parts of the city.Therefore,the increase in consumption varies depending on the geographical reasons where the type projects are implemented.Selected regions of the four thermal zones in Turkey for this research are provided below:1^st Thermal district in Antalya;2^nd Thermal district in Bursa;3^rd Thermal district in Elaz??;4^th Thermal district in Kars.The calculation of the energy consumption created by the above cities by means of BEP-TR program and comparing classes.展开更多
The last few decades have witnessed a rapid development of green buildings in China especially the office sector.The life cycle assessment(LCA)approach has potential to weigh the benefits and costs associated with gre...The last few decades have witnessed a rapid development of green buildings in China especially the office sector.The life cycle assessment(LCA)approach has potential to weigh the benefits and costs associated with green building developments.Essentially,the LCA method evaluates the costs and benefits across a building’s life cycle with a system approach.In this study,a green office building in Beijing,China,was analyzed by life cycle assessment to quantify its energy use and evaluate the environmental impacts in each life cycle stage.The environmental impacts can be reduced by 7.3%,1.6%and 0.8%by using 30%gas-fired electricity generation,increasing the summer indoor temperature by 1℃,and switching off office equipment and lighting during lunchtime,respectively.Similarly,by reusing 80%of the selected materials when the building is finally demolished,the three major adverse environmental impacts on human health,ecosystem quality,and resource depletion can be reduced by 11.3%12.7%,and 7.1%respectively.Sensitivity analysis shows that electricity conservation is more effective than materials efficiency in terms of a reduction in environmental impacts.These findings are useful to inform decision makers in different stages of the green building life cycle.展开更多
Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a ...Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a multi-time scale optimal scheduling strategy based on model predictive control(MPC)is proposed under the consideration of load optimization.First,load optimization is achieved by controlling the charging time of electric vehicles as well as adjusting the air conditioning operation temperature,and the photovoltaic energy storage building system model is constructed to propose a day-ahead scheduling strategy with the lowest daily operation cost.Second,considering inter-day to intra-day source-load prediction error,an intraday rolling optimal scheduling strategy based on MPC is proposed that dynamically corrects the day-ahead dispatch results to stabilize system power fluctuations and promote photovoltaic consumption.Finally,taking an office building on a summer work day as an example,the effectiveness of the proposed scheduling strategy is verified.The results of the example show that the strategy reduces the total operating cost of the photovoltaic energy storage building system by 17.11%,improves the carbon emission reduction by 7.99%,and the photovoltaic consumption rate reaches 98.57%,improving the system’s low-carbon and economic performance.展开更多
Carbon emissions mainly result from energy consumption. Carbon emissions inevitably will increase to some extent with economic expansion and rising energy consumption. We introduce a gray theory of quantitative analys...Carbon emissions mainly result from energy consumption. Carbon emissions inevitably will increase to some extent with economic expansion and rising energy consumption. We introduce a gray theory of quantitative analysis of the energy consumption of residential buildings in Chongqing,China,on the impact of carbon emission factors. Three impacts are analyzed,namely per capita residential housing area,domestic water consumption and the rate of air conditioner ownership per 100 urban households. The gray prediction model established using the Chongqing carbon emission-residential building energy consumption forecast model is sufficiently accurate to achieve a measure of feasibility and applicability.展开更多
Ventilation is an effective solution for improving indoor air quality and reducing airborne transmission.Buildings need sufficient ventilation to maintain a low infection risk but also need to avoid an excessive venti...Ventilation is an effective solution for improving indoor air quality and reducing airborne transmission.Buildings need sufficient ventilation to maintain a low infection risk but also need to avoid an excessive ventilation rate,which may lead to high energy consumption.The Wells-Riley(WR)model is widely used to predict infection risk and control the ventilation rate.However,few studies compared the non-steady-state(NSS)and steady-state(SS)WR models that are used for ventilation control.To fill in this research gap,this study investigates the effects of the mechanical ventilation control strategies based on NSS/SS WR models on the required ventilation rates to prevent airborne transmission and related energy consumption.The modified NSS/SS WR models were proposed by considering many parameters that were ignored before,such as the initial quantum concentration.Based on the NSS/SS WR models,two new ventilation control strategies were proposed.A real building in Canada is used as the case study.The results indicate that under a high initial quantum concentration(e.g.,0.3 q/m^(3))and no protective measures,SS WR control underestimates the required ventilation rate.The ventilation energy consumption of NSS control is up to 2.5 times as high as that of the SS control.展开更多
Traditional agriculture is in the direction of increasing integration of the primary industry, secondary industry, and tertiary industry in Zhejiang province. A survey was undertaken on energy consumption of tradition...Traditional agriculture is in the direction of increasing integration of the primary industry, secondary industry, and tertiary industry in Zhejiang province. A survey was undertaken on energy consumption of traditional natural villages by taking Anji Ligeng village for an example. This paper firstly studied rural buildings, rural family structure, occupants’ activity and the usage of household appliances in the form of a questionnaire. Then, the household energy resource structure and energy consumption structure were analyzed and compared with other surveys. The results show that, the electric energy consumption was 6 kWh/(m<sup>2</sup>•a), which was far less than urban residential household. In rural household energy resource structure, the proportion of non-commercial energy resource was higher than commercial energy resource. Firewood accounted for 83%, electricity for 12%, LPG for 3% and solar energy for 2%. In building energy consumption structure, cooking and hot water took up 33%, appliances 31%, lighting 20%, heating 12%, cooling 4%. In all influential factors, frequently used area, number of air conditioner per household and building function were obviously correlated with energy consumption;income, building shape factor and window to wall area ratio had no correlation with energy consumption in the low energy consumption area.展开更多
The US Green Building Council’s(USGBC)LEED guidelines have become the dominant third-party certification program for“green”buildings in the US.Given that buildings use 37%of all energy and 68%of all electricity whi...The US Green Building Council’s(USGBC)LEED guidelines have become the dominant third-party certification program for“green”buildings in the US.Given that buildings use 37%of all energy and 68%of all electricity while contributing substantially to air emission,waste generation,and water consumption issues in the US,one of LEED’s purposes is to address the environmental impacts of energy use in buildings.This research analyzes(1)how well the LEED guidelines measure these impacts and(2)which parameters create the most variation among these impacts.Environmental impacts here refer to emissions of carbon dioxide,nitrogen oxides,sulfur dioxide,mercury,and par-ticulate matter(PM10);solid waste;nuclear waste;and water consumption.Using data from the US Department of Energy,the National Renewable Energy Laboratory,the US EPA Energy Star program,and the USGBC,among others,models using Monte Carlo analysis were created to simulate the range of impacts of LEED-certified buildings.Various metrics and statistics were calculated to highlight the significance of variation in these impacts.Future re-search needs and implications of the results for LEED version 3.0 are also discussed.展开更多
The project investigated the potential of building geometry to minimize energy consumption in office buildings.Five distinct geometries were modeled as mid-size office occupancies in the context of Toronto,Ontario,and...The project investigated the potential of building geometry to minimize energy consumption in office buildings.Five distinct geometries were modeled as mid-size office occupancies in the context of Toronto,Ontario,and examined with varied design parameters:window to wall ratio(WWR)and external static shading devices.IES VE software was used to predict the annual energy consumption of the five archetypes for 40 permutations.The outcome of this research showed that the variation of the total energy use from one shape to another was relatively small.WWR appeared to have a stronger impact on the energy pattern of a building than its shape.Overall,the energy performance of the archetypes were observed to conform to their individual building aspect ratios.The findings are thus expected to provide useful guidelines for architects on utilizing building geometry as an energy saving measure in the design of office buildings.展开更多
As a country of great population, China has increasing building energy consumption continuously. It not only threatens the lack of total energy but also hardens the progress of protecting environment. Therefore, it fo...As a country of great population, China has increasing building energy consumption continuously. It not only threatens the lack of total energy but also hardens the progress of protecting environment. Therefore, it forces the country to accelerate finding substitution application of conventional energy in building, renewable energy building utilization. In base of 2010, this study explores the potential of the renewable energy building utilization by using energy consumption analysis until 2030 and predicts annual alternative quantity of renewable energy in different situations.展开更多
基金funded in part by the Industrial Assessment Center Projectsupported by grants fromthe US Department of Energy and by the West Virginia Development Office.
文摘Building energy performance is a function of numerous building parameters.In this study,sensitivity analysis on twenty parameters is performed to determine the top three parameters that have the most significant impact on the energy performance of buildings.Actual data from two fully operational commercial buildings were collected and used to develop a building energy model in the Quick Energy Simulation Tool(eQUEST).The model is calibrated using the Normalized Mean Bias Error(NMBE)and Coefficient of Variation of Root Mean Square Error(CV(RMSE))method.The model satisfies the NMBE and CV(RMSE)criteria set by the American Society of Heating,Refrigeration,and Air-Conditioning(ASHRAE)Guideline 14,Federal Energy Management Program(FEMP),and International Performance Measurement and Verification Protocol(IPMVP)for building energy model calibration.The values of the parameters are varied in two levels,and then the percentage change in output is calculated.Fractional factorial analysis on eight parameters with the highest percentage change in energy performance is performed at two levels in a statistical software JMP.For building A,the top 3 parameters from the percentage change method are:Heating setpoint,cooling setpoint and server room.From fractional factorial design,the top 3 parameters are:heating setpoint(p-value=0.00129),cooling setpoint(p-value=0.00133),and setback control(p-value=0.00317).For building B,the top 3 parameters from both methods are:Server room(pvalue=0.0000),heating setpoint(p-value=0.00014),and cooling setpoint(p-value=0.00035).If the best values for all top three parameters are taken simultaneously,energy efficiency improves by 29%for building A and 35%for building B.
基金The National Natural Science Foundation of China(No.51608426,51590913)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry(No.(2014)1685)
文摘The heating load simulation models of the residential buildings in Lhasa are established for enhancing the space organization’s adaptability to climate and radiation and improving its energy saving performance.The space organization items a e analyzed for both the existing buildings without insulation and new buildings with good insulation.The items include orientation design,south a d north balcony design,the north and south partition wall’s position design,storey height design and window-wall ratio design.Simulation results show that orientation is the key design element for energy saving design,and adverse orientation can obviouslyincrease heating energy consumption;south and north balconies can reduce winter heating energy consumption;partition walls move to the north,which means that the south room’s big depth design leads to less heating energy consumption,but the effect is not inconspicuous;smaier storey height results in less heating load.For the existing buildings,the window-wall ratio of south side has a balance point for energy saving design in the calculation condition.For the new buildings with good insulation,enlarging the south window-wal ratio can continuously reduce heating energy consumption,but the energy saving rate between models gets smaier.The heating energy consumption comparison study between the common model and optimal space design model demonstrates that the energy saving design can significantly reduce heating energy consumption
基金Project(52108101)supported by the National Natural Science Foundation of ChinaProjects(2020GK4057,2021JJ40759)supported by the Hunan Provincial Science and Technology Department,China。
文摘For the carbon-neutral,a multi-carrier renewable energy system(MRES),driven by the wind,solar and geothermal,was considered as an effective solution to mitigate CO2emissions and reduce energy usage in the building sector.A proper sizing method was essential for achieving the desired 100%renewable energy system of resources.This paper presented a bi-objective optimization formulation for sizing the MRES using a constrained genetic algorithm(GA)coupled with the loss of power supply probability(LPSP)method to achieve the minimal cost of the system and the reliability of the system to the load real time requirement.An optimization App has been developed in MATLAB environment to offer a user-friendly interface and output the optimized design parameters when given the load demand.A case study of a swimming pool building was used to demonstrate the process of the proposed design method.Compared to the conventional distributed energy system,the MRES is feasible with a lower annual total cost(ATC).Additionally,the ATC decreases as the power supply reliability of the renewable system decreases.There is a decrease of 24%of the annual total cost when the power supply probability is equal to 8%compared to the baseline case with 0%power supply probability.
文摘To overcome the shortcomings of the energyconsumption prediction models in the application during thedesign stage, a quick prediction model for energy consumptionis proposed based on the decoupling method. Taking typicalresidential and office buildings in hot summer and cold winterzones as research objects, the influence factors on buildingenergy consumption are classified into intrinsic factors andoperational factors on the basis of the heat transfer principle.Then, using the intrinsic factors as the fundamental variablesand operational factors as the modified variables, the quickprediction model for the buildings in typical cold and hot zonesis proposed based on the decoupling method and the accuracyof the proposed model is verified. The results show thatcompared to the simulation results of EnergyPlus, the relativeerror of the prediction model is less than 1.5% ; comparedwith the real operating data of the building, the relative erroris 13.14% in 2011 and 8.56% in 2012 due to the fact that thecoincidence factor becomes larger than the design value about16% in 2011 and 13% in 2012. The finding reveals that theproposed model has the advantages of rapid calculationcompared with EnergyPlus and Design Builder when predictingbuilding energy consumption in building designs. The energyconsumption prediction model is of great practical value inoptimal operation and building designs.
基金Project(2011BAJ01B05) supported by the National Science and Technology Pillar Program during the Twelfth Five-year Plan Period of China
文摘With rapid economy growth,building energy consumption in China has been gradually increased.The energy consumption and indoor environmental quality of 51 office buildings in Hainan Province,a hot and humid area,were studied through collection of verified data in site visits and field tests.The result revealed that,electricity accounted for 99.79% of the total energy consumption,natural gas 0.17%,and diesel 0.04%.The air conditioning dominated the energy use with a share of 43.18%,equipment in the particular areas 26.90%,equipment in the office rooms 11.95%,lighting system 8.67%,general service system 7.57%,and miscellaneous items 1.73%.Statistical method including six indicators obtained the energy consumption benchmark with upper limit of 98.31 kW-h/m2 and lower limit of 55.26 kW-h/m2.According to ASHRAE standard(comfortable standard) and GB/T 18883-2002(acceptable standard),the indoor environmental quality of 51 sampled office buildings was classified into three ranks:good,normal and bad.With benchmark of building energy consumption combined with indoor environmental quality,it was found that only 3.92% of sampled buildings can be identified as the best performance buildings with low energy consumption and advanced indoor environmental quality,and the buildings classified into normal level accounted for the maximum ratio.
文摘In the present article thermal and electrical energy consumptions for different types of buildings are analyzed. The latitude and longitude of the researched area are defined 59?00'N and 26?00'E. According to K?ppen climate classification the area is located in warm summer continental climate. The study consist 40 residential, 7 educational and 44 public buildings. Three years data for each building type among 2006-2011 was used. Several detailed energy balances are presented for apartment buildings. In addition the different ways of domestic hot water preparation are analyzed for apartment buildings. The school buildings average consumption values are represented in study. Also valuable information of measured electrical energy consumption balance for a new office building is presented. Finally there is included the energy consumption analysis of public buildings.
文摘Riyadh city is the fastest growing city in Saudi Arabia. The rapid urban growth that happened recently in Riyadh was not based on the traditional urban planning principles, which have been established and applied for the city development process. The imported building regulations have created a new urban structures and street patterns. The contemporary urban form in Riyadh city is based mainly on traffic and economic consideration with the neglect of environmental dimensions. This research aims to examine the impacts of building regulations on the thermal performance of residential buildings in Riyadh city, with the ultimate goal of establishing planning guidelines that consider the environmental conditions of the city. The methodology adopted for achieving the aim of this study consists of two phases. First, the literature related to building regulations development in Riyadh, as of 2018, was reviewed. Second, buildings energy simulation was conducted to examine the thermal performance of the typical current status of residential building blocks in Riyadh city, and then several changes to building regulations were made to investigate their impacts on the thermal performance of buildings. The results showed that the impacts of Riyadh building regulations on the thermal performance of residential buildings differ across the evaluated cases. The ratio of building height to street width, urban block street orientation, and building orientation are the main factors affecting thermal performance of buildings within urban block. The study also concludes that adjusting the ratio of building height to the distance between buildings could have a significant impact in reducing cooling loads. This study will help policy makers, planners and designers to investigate the shortcoming in the current building regulations.
文摘This paper analyzes the shortcomings of ECOTECT simulation software, puts forward the real-time energy consumption monitoring software. According to the structural characteristics of large public buildings, the paper proposes the key technology development and the functions of the software platform, and provides RS485 communication code. The research results in this paper have some practical value on energy consumption of large-scale construction monitoring.
基金Student s Platform for Innovation and Entrepreneurship Training Program at State Level,the Ministry of Education of China(201910414024)Student s Platform for Innovation and Entrepreneurship Training Program at State Level,the Ministry of Education of China(201910414012).
文摘In the context of the new period,the living standards and comfort demands of rural residents are increasing,which promotes the continuous growth of the total energy consumption of rural residential buildings.In this study,it estimated the total energy consumption of rural residential buildings in 30 provinces(or cities)in China from 2004 to 2016.Through the division of climate regions of the residential buildings,this paper analyzed the characteristics of changes in the energy structure of residential buildings and the trend of energy consumption from the perspective of the province.Then based on the people s livelihood and from the perspective of development,it came up with some pertinent strategies and recommendations for energy saving and emission reduction in rural residential buildings.
文摘China is currently going through a phase of rapid mass urbanisation, and it is important to investigate how the growing built environment will cope with climate change, to see how the energy consumption of buildings in China will be affected. This is especially important for the fast-growing cities in the north, and around the east and south coasts. This paper aims to study the effects of future climate change on the energy consumption of buildings in the three main climate regions of China, namely the “Cold” region in the north, which includes Beijing;the “Hot Summer Cold Winter” region in the east, which includes cities such as Shanghai and Ningbo;and the “Hot Summer Mild Winter” region in the south, which includes Guangzhou. Using data from the climate model, HadCM3, Test Reference Years are generated for the 2020s, 2050s and 2080s, for various IPCC future scenarios. These are then used to access the energy performance of typical existing buildings, and also the effects of retrofitting them to the standard of the current building codes. It was found that although there are reductions in energy consumption for heating and cooling with retrofitting existing residential buildings to the current standard, the actual effects are very small compared with the extra energy consumption that comes as a result of future climate change. This is especially true for Guangzhou, which currently have very little heating load, so there is little benefit of the reduction in heating demand from climate change. The effects of retrofitting in Beijing are also limited, and only in Ningbo was the effect of retrofitting able to nullify the effects of climate change up to 2020s. More improvements in building standards in all three regions are required to significantly reduce the effects of future climate change, especially to beyond 2020s.
文摘With the continuous development of science and technology and the gradual improvement of modem building technology, people pay more and more attention to the introduction of advanced technology in architectural design, such as the application of intelligent technology. With the increasingly severe environmental situation, people are increasingly demanding the environmental performance and green performance of buildings. The establishment of ultra-low energy consumption passive buildings has become one of the key construction contents of construction projects. This paper mainly analyzes the design points and architectural forms of related buildings from the perspective of intelligent control.
文摘School is a special place where students come together to become productive individuals of society,acquire basic skills and acquire citizenship knowledge.With the introduction of the new education system(4+4+4)in Turkey in 2012-2013,some difficulties occurred in the spatial structure of the schools.After the new system,increasing number of students and decreasing student requirements have been tried to be solved with temporary solutions.At the same time that millions of students studying in primary schools all over Turkey have the same architectural feature as one type of architectural school project,regardless of the geographical and social situation began to be implemented in all parts of the city.Therefore,the increase in consumption varies depending on the geographical reasons where the type projects are implemented.Selected regions of the four thermal zones in Turkey for this research are provided below:1^st Thermal district in Antalya;2^nd Thermal district in Bursa;3^rd Thermal district in Elaz??;4^th Thermal district in Kars.The calculation of the energy consumption created by the above cities by means of BEP-TR program and comparing classes.
基金supported by the National Natural Sciences Foundation of China under Grant 71273185 and 41201591Post-doctor Sciences Foundation of China under Grant 2013M540145The Key project of the National Social Science Fund under Grant 13AZD011.
文摘The last few decades have witnessed a rapid development of green buildings in China especially the office sector.The life cycle assessment(LCA)approach has potential to weigh the benefits and costs associated with green building developments.Essentially,the LCA method evaluates the costs and benefits across a building’s life cycle with a system approach.In this study,a green office building in Beijing,China,was analyzed by life cycle assessment to quantify its energy use and evaluate the environmental impacts in each life cycle stage.The environmental impacts can be reduced by 7.3%,1.6%and 0.8%by using 30%gas-fired electricity generation,increasing the summer indoor temperature by 1℃,and switching off office equipment and lighting during lunchtime,respectively.Similarly,by reusing 80%of the selected materials when the building is finally demolished,the three major adverse environmental impacts on human health,ecosystem quality,and resource depletion can be reduced by 11.3%12.7%,and 7.1%respectively.Sensitivity analysis shows that electricity conservation is more effective than materials efficiency in terms of a reduction in environmental impacts.These findings are useful to inform decision makers in different stages of the green building life cycle.
文摘Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a multi-time scale optimal scheduling strategy based on model predictive control(MPC)is proposed under the consideration of load optimization.First,load optimization is achieved by controlling the charging time of electric vehicles as well as adjusting the air conditioning operation temperature,and the photovoltaic energy storage building system model is constructed to propose a day-ahead scheduling strategy with the lowest daily operation cost.Second,considering inter-day to intra-day source-load prediction error,an intraday rolling optimal scheduling strategy based on MPC is proposed that dynamically corrects the day-ahead dispatch results to stabilize system power fluctuations and promote photovoltaic consumption.Finally,taking an office building on a summer work day as an example,the effectiveness of the proposed scheduling strategy is verified.The results of the example show that the strategy reduces the total operating cost of the photovoltaic energy storage building system by 17.11%,improves the carbon emission reduction by 7.99%,and the photovoltaic consumption rate reaches 98.57%,improving the system’s low-carbon and economic performance.
基金Project(50838009) supported by the National Natural Science Foundation of ChinaProjects(2006BAJ02A09,2006BAJ01A13-2) supported by the National Key Technologies R & D Program of China
文摘Carbon emissions mainly result from energy consumption. Carbon emissions inevitably will increase to some extent with economic expansion and rising energy consumption. We introduce a gray theory of quantitative analysis of the energy consumption of residential buildings in Chongqing,China,on the impact of carbon emission factors. Three impacts are analyzed,namely per capita residential housing area,domestic water consumption and the rate of air conditioner ownership per 100 urban households. The gray prediction model established using the Chongqing carbon emission-residential building energy consumption forecast model is sufficiently accurate to achieve a measure of feasibility and applicability.
基金Project(RGPIN-2019-05824)supported by the Start-up Fund of Universitéde Sherbrooke and Discovery Grants of Natural Sciences and Engineering Research Council of Canada(NSERC)。
文摘Ventilation is an effective solution for improving indoor air quality and reducing airborne transmission.Buildings need sufficient ventilation to maintain a low infection risk but also need to avoid an excessive ventilation rate,which may lead to high energy consumption.The Wells-Riley(WR)model is widely used to predict infection risk and control the ventilation rate.However,few studies compared the non-steady-state(NSS)and steady-state(SS)WR models that are used for ventilation control.To fill in this research gap,this study investigates the effects of the mechanical ventilation control strategies based on NSS/SS WR models on the required ventilation rates to prevent airborne transmission and related energy consumption.The modified NSS/SS WR models were proposed by considering many parameters that were ignored before,such as the initial quantum concentration.Based on the NSS/SS WR models,two new ventilation control strategies were proposed.A real building in Canada is used as the case study.The results indicate that under a high initial quantum concentration(e.g.,0.3 q/m^(3))and no protective measures,SS WR control underestimates the required ventilation rate.The ventilation energy consumption of NSS control is up to 2.5 times as high as that of the SS control.
文摘Traditional agriculture is in the direction of increasing integration of the primary industry, secondary industry, and tertiary industry in Zhejiang province. A survey was undertaken on energy consumption of traditional natural villages by taking Anji Ligeng village for an example. This paper firstly studied rural buildings, rural family structure, occupants’ activity and the usage of household appliances in the form of a questionnaire. Then, the household energy resource structure and energy consumption structure were analyzed and compared with other surveys. The results show that, the electric energy consumption was 6 kWh/(m<sup>2</sup>•a), which was far less than urban residential household. In rural household energy resource structure, the proportion of non-commercial energy resource was higher than commercial energy resource. Firewood accounted for 83%, electricity for 12%, LPG for 3% and solar energy for 2%. In building energy consumption structure, cooking and hot water took up 33%, appliances 31%, lighting 20%, heating 12%, cooling 4%. In all influential factors, frequently used area, number of air conditioner per household and building function were obviously correlated with energy consumption;income, building shape factor and window to wall area ratio had no correlation with energy consumption in the low energy consumption area.
基金supported by the Institute for the Environment at the University of North Carolina (UNC)at Chapel Hill and Cherokee Investment Partners.
文摘The US Green Building Council’s(USGBC)LEED guidelines have become the dominant third-party certification program for“green”buildings in the US.Given that buildings use 37%of all energy and 68%of all electricity while contributing substantially to air emission,waste generation,and water consumption issues in the US,one of LEED’s purposes is to address the environmental impacts of energy use in buildings.This research analyzes(1)how well the LEED guidelines measure these impacts and(2)which parameters create the most variation among these impacts.Environmental impacts here refer to emissions of carbon dioxide,nitrogen oxides,sulfur dioxide,mercury,and par-ticulate matter(PM10);solid waste;nuclear waste;and water consumption.Using data from the US Department of Energy,the National Renewable Energy Laboratory,the US EPA Energy Star program,and the USGBC,among others,models using Monte Carlo analysis were created to simulate the range of impacts of LEED-certified buildings.Various metrics and statistics were calculated to highlight the significance of variation in these impacts.Future re-search needs and implications of the results for LEED version 3.0 are also discussed.
文摘The project investigated the potential of building geometry to minimize energy consumption in office buildings.Five distinct geometries were modeled as mid-size office occupancies in the context of Toronto,Ontario,and examined with varied design parameters:window to wall ratio(WWR)and external static shading devices.IES VE software was used to predict the annual energy consumption of the five archetypes for 40 permutations.The outcome of this research showed that the variation of the total energy use from one shape to another was relatively small.WWR appeared to have a stronger impact on the energy pattern of a building than its shape.Overall,the energy performance of the archetypes were observed to conform to their individual building aspect ratios.The findings are thus expected to provide useful guidelines for architects on utilizing building geometry as an energy saving measure in the design of office buildings.
文摘As a country of great population, China has increasing building energy consumption continuously. It not only threatens the lack of total energy but also hardens the progress of protecting environment. Therefore, it forces the country to accelerate finding substitution application of conventional energy in building, renewable energy building utilization. In base of 2010, this study explores the potential of the renewable energy building utilization by using energy consumption analysis until 2030 and predicts annual alternative quantity of renewable energy in different situations.