Mono-crystalline silicon solar cells with a passivated emitter rear contact(PERC)configuration have attracted extensive attention from both industry and scientific communities.A record efficiency of 24.06%on p-type si...Mono-crystalline silicon solar cells with a passivated emitter rear contact(PERC)configuration have attracted extensive attention from both industry and scientific communities.A record efficiency of 24.06%on p-type silicon wafer and mass production efficiency around 22%have been demonstrated,mainly due to its superior rear side passivation.In this work,the PERC solar cells with a p-type silicon wafer were numerically studied in terms of the surface passivation,quality of silicon wafer and metal electrodes.A rational way to achieve a 24%mass-production efficiency was proposed.Free energy loss analyses were adopted to address the loss sources with respect to the limit efficiency of 29%,which provides a guideline for the design and manufacture of a high-efficiency PERC solar cell.展开更多
Monolithic textured perovskite/silicon tandem solar cells(TSCs)are expected to achieve maximum light capture at the lowest cost,potentially exhibiting the best power conversion efficiency.However,it is challenging to ...Monolithic textured perovskite/silicon tandem solar cells(TSCs)are expected to achieve maximum light capture at the lowest cost,potentially exhibiting the best power conversion efficiency.However,it is challenging to fabricate high-quality perovskite films and preferred crystal orientation on commercially textured silicon substrates with micrometersize pyramids.Here,we introduced a bulky organic molecule(4-fluorobenzylamine hydroiodide(F-PMAI))as a perovskite additive.It is found that F-PMAI can retard the crystallization process of perovskite film through hydrogen bond interaction between F^(−)and FA^(+)and reduce(111)facet surface energy due to enhanced adsorption energy of F-PMAI on the(111)facet.Besides,the bulky molecular is extruded to the bottom and top of perovskite film after crystal growth,which can passivate interface defects through strong interaction between F-PMA+and undercoordinated Pb^(2+)/I^(−).As a result,the additive facilitates the formation of large perovskite grains and(111)preferred orientation with a reduced trap-state density,thereby promoting charge carrier transportation,and enhancing device performance and stability.The perovskite/silicon TSCs achieved a champion efficiency of 30.05%based on a silicon thin film tunneling junction.In addition,the devices exhibit excellent longterm thermal and light stability without encapsulation.This work provides an effective strategy for achieving efficient and stable TSCs.展开更多
Silicon passivated emitter and rear contact(PERC) solar cells with V-groove texture were fabricated using maskless alkaline solution etching with in-house developed additive. Compared with the traditional pyramid text...Silicon passivated emitter and rear contact(PERC) solar cells with V-groove texture were fabricated using maskless alkaline solution etching with in-house developed additive. Compared with the traditional pyramid texture, the V-groove texture possesses superior effective minority carrier lifetime, enhanced p–n junction quality and better applied filling factor(FF). In addition, a V-groove texture can greatly reduce the shading area and edge damage of front Ag electrodes when the V-groove direction is parallel to the gridline electrodes. Due to these factors, the V-groove solar cells have a higher efficiency(21.78%) than pyramid solar cells(21.62%). Interestingly, external quantum efficiency(EQE) and reflectance of the V-groove solar cells exhibit a slight decrease when the incident light angle(θ) is increased from 0° to 75°, which confirms the excellent quasi omnidirectionality of the V-groove solar cells. The proposed V-groove solar cell design shows a 2.84% relative enhancement of energy output over traditional pyramid solar cells.展开更多
This article presents a three-dimensional analysis of the impact of the angle of incidence of the magnetic field intensity on the electrical performance (series resistance, shunt resistance) of a bifacial polycrystall...This article presents a three-dimensional analysis of the impact of the angle of incidence of the magnetic field intensity on the electrical performance (series resistance, shunt resistance) of a bifacial polycrystalline silicon solar cell. The cell is illuminated simultaneously from both sides. The continuity equation for the excess minority carriers is solved at the emitter and at the depth of the base respectively. The analytical expressions for photocurrent density, photovoltage, series resistance and shunt resistance were deduced. Using these expressions, the values of the series and shunt resistances were extracted for different values of the angle of incidence of the magnetic field intensity. The study shows that as the angle of incidence increases, the slopes of the minority carrier density for the two modes of operation of the solar cell decrease. This is explained by a drop in the accumulation of carriers in the area close to the junction due to the fact that the Lorentz force is unable to drive the carriers towards the lateral surfaces due to the weak action of the magnetic field, which tends to cancel out as the incidence angle increases, and consequently a drop in the open circuit photovoltage. This, in turn, reduces the Lorentz force. These results predict that the p-n junction of the solar cell will not heat up. The study also showed a decrease in series resistance as the incidence angle of the magnetic field intensity increased from 0 rad to π/2 rad and an increase in shunt resistance as the incidence angle increased. His behaviour of the electrical parameters when the angle of incidence of the field from 0 rad to π/2 rad shows that the decreasing magnetic field vector tends to be collinear with the electron trajectory. This allows them to cross the junction and participate in the external current. The best orientation for the Lorentz force is zero, in which case the carriers can move easily towards the junction.展开更多
The monocrystalline silicon is a promising material that could be used in solar cells that convert light into electricity. Although the cost of ordinary silicon (Si) solar cells has decreased significantly over the pa...The monocrystalline silicon is a promising material that could be used in solar cells that convert light into electricity. Although the cost of ordinary silicon (Si) solar cells has decreased significantly over the past two decades, the conversion efficiency of these cells has remained relatively high. While solar cells have a great potential as a device of renewable energy, the high cost they incur per Watt continues to be a significant barrier to their widespread implementation. As a consequence, it is vital to conduct research into alternate materials that may be used in the construction of solar cells. The heterojunction solar cell (HJSC), which is based on n-type zinc oxide (n-ZnO) and p-type silicon (p-Si), is one of the numerous alternatives of the typical Si single homojunction solar cell. There are many deficiencies that can be found in the published research on n-ZnO/p-Si heterojunction solar cell. Inconsistencies in the stated value of open circuit voltage (V<sub>oc</sub>) of the solar cell are one example of deficiency. The absence of a full theoretical study to evaluate the potential of the solar cell structure is another deficiency that can be found in these researches. A lower value of experimentally obtained V<sub>OC</sub> in comparison to the theoretical prediction based on the band-gap between n-ZnO and p-Si. There needs to be more consensus among scientists regarding the optimal conditions for the growth of zinc oxide. Many software’s are available for simulating and optimizing the solar cells based on these parameters. For this purpose, in this dissertation, I provide computational results relevant to n-ZnO/p-Si HJSC to overcome deficiencies that have been identified. While modeling and simulating the potential of the solar cell structure with AFORS-HET, it is essential to consider the constraints that exist in the real world. AFORS-HET was explicitly designed to mimic the multilayer solar cell arrangement. In AFORS-HET, we can add up to seven layers for solar cell layout. By using this software, we can figure out the open circuit voltage (V<sub>OC</sub>), the short circuit current (J<sub>SC</sub>), the quantum efficiency (QE, %), the heterojunction energy band structure, and the power conversion efficiency (PCE).展开更多
Etching was performed on (100) silicon wafers using silicon-dissolved tetramethylammonium hydroxide (TMAH) solutions without the addition of surfactant. Experiments were carried out in different TMAH concentration...Etching was performed on (100) silicon wafers using silicon-dissolved tetramethylammonium hydroxide (TMAH) solutions without the addition of surfactant. Experiments were carried out in different TMAH concentrations at different temperatures for different etching times. The surface phenomena, etching rates, surface morphology and surface reflectance were analyzed. Experimental results show that the resulting surface covered with uniform pyramids can be realized with a small change in etching rates during the etching process. The etching mechanism is explained based on the experimental results and the theoretical considerations. It is suggested that all the components in the TMAH solutions play important roles in the etching process. Moreover, TMA^+ ions may increase the wettability of the textured surface. A good textured surface can be obtained in conditions where the absorption of OH-/H2O is in equilibrium with that of TMA+/SiO2(OH)2^-.展开更多
In this work,we developed a simple and direct circuit model with a dual two-diode model that can be solved by a SPICE numerical simulation to comprehensively describe the monolithic perovskite/crystalline silicon(PVS/...In this work,we developed a simple and direct circuit model with a dual two-diode model that can be solved by a SPICE numerical simulation to comprehensively describe the monolithic perovskite/crystalline silicon(PVS/c-Si)tandem solar cells.We are able to reveal the effects of different efficiency-loss mechanisms based on the illuminated current density-voltage(J-V),semi-log dark J-V,and local ideality factor(m-V)curves.The effects of the individual efficiency-loss mechanism on the tandem cell’s efficiency are discussed,including the exp(V/VT)and exp(V/2VT)recombination,the whole cell’s and subcell’s shunts,and the Ohmic-contact or Schottky-contact of the intermediate junction.We can also fit a practical J-V curve and find a specific group of parameters by the trial-and-error method.Although the fitted parameters are not a unique solution,they are valuable clues for identifying the efficiency loss with the aid of the cell’s structure and experimental processes.This method can also serve as an open platform for analyzing other tandem solar cells by substituting the corresponding circuit models.In summary,we developed a simple and effective methodology to diagnose the efficiency-loss source of a monolithic PVS/c-Si tandem cell,which is helpful to researchers who wish to adopt the proper approaches to improve their solar cells.展开更多
The ultraviolet(UV)light stability of silicon heterojunction(SHJ)solar cells should be addressed before large-scale production and applications.Introducing downshifting(DS)nanophosphors on top of solar cells that can ...The ultraviolet(UV)light stability of silicon heterojunction(SHJ)solar cells should be addressed before large-scale production and applications.Introducing downshifting(DS)nanophosphors on top of solar cells that can convert UV light to visible light may reduce UV-induced degradation(UVID)without sacrificing the power conversion efficiency(PCE).Herein,a novel composite DS nanomaterial composed of YVO_(4):Eu^(3+),Bi^(3+)nanoparticles(NPs)and AgNPs was synthesized and introduced onto the incident light side of industrial SHJ solar cells to achieve UV shielding.The YVO_(4):Eu^(3+),Bi^(3+)NPs and Ag NPs were synthesized via a sol-gel method and a wet chemical reduction method,respectively.Then,a composite structure of the YVO_(4):Eu^(3+),Bi^(3+)NPs decorated with Ag NPs was synthesized by an ultrasonic method.The emission intensities of the YVO_(4):Eu^(3+),Bi^(3+)nanophosphors were significantly enhanced upon decoration with an appropriate amount of~20 nm Ag NPs due to the localized surface plasmon resonance(LSPR)effect.Upon the introduction of LSPR-enhanced downshifting,the SHJ solar cells exhibited an~0.54%relative decrease in PCE degradation under UV irradiation with a cumulative dose of 45 k W h compared to their counterparts,suggesting excellent potential for application in UV-light stability enhancement of solar cells or modules.展开更多
Today,it has become an important task to modify existing traditional silicon-based solar cell factory to produce high-efficiency silicon-based heterojunction solar cells,at a lower cost.Therefore,the aim of this paper...Today,it has become an important task to modify existing traditional silicon-based solar cell factory to produce high-efficiency silicon-based heterojunction solar cells,at a lower cost.Therefore,the aim of this paper is to analyze CH_(3)NH_(3)PbI_(3) and ZnO materials as an emitter layer for p-type silicon wafer-based heterojunction solar cells.CH_(3)NH_(3)PbI_(3) and ZnO can be synthesized using the cheap Sol-Gel method and can form n-type semiconductor.We propose to combine these two materials since CH_(3)NH_(3)PbI_(3) is a great light absorber and ZnO has an optimal complex refractive index which can be used as antireflection material.The photoelectric parameters of n-CH_(3)NH_(3)PbI_(3)/p-Si,n-ZnO/p-Si,and n-Si/p-Si solar cells have been studied in the range of 20–200 nm of emitter layer thickness.It has been found that the short circuit current for CH_(3)NH_(3)PbI_(3)/p-Si and n-ZnO/p-Si solar cells is almost the same when the emitter layer thickness is in the range of 20–100 nm.Additionally,when the emitter layer thickness is greater than 100 nm,the short circuit current of CH_(3)NH_(3)PbI_(3)/p-Si exceeds that of n-ZnO/p-Si.The optimal emitter layer thickness for n-CH_(3)NH_(3)PbI_(3)/p-Si and n-ZnO/p-Si was found equal to 80 nm.Using this value,the short-circuit current and the fill factor were estimated around 18.27 mA/cm^(2) and 0.77 for n-CH_(3)NH_(3)PbI_(3)/p-Si and 18.06 mA/cm^(2) and 0.73 for n-ZnO/p-Si.Results show that the efficiency of n-CH_(3)NH_(3)PbI_(3)/p-Si and n-ZnO/p-Si solar cells with an emitter layer thickness of 80 nm are 1.314 and 1.298 times greater than efficiency of traditional n-Si/p-Si for the same sizes.These findings will help perovskites materials to be more appealing in the PV industry and accelerate their development to become a viable alternative in the renewable energy sector.展开更多
A series of microcrystalline silicon thin films were fabricated by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) at different silane concentrations in a P chamber. Through analysis of the...A series of microcrystalline silicon thin films were fabricated by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) at different silane concentrations in a P chamber. Through analysis of the structural and electrical properties of these materials,we conclude that the photosensitivity slightly decreased then increased as the silane concentration increased,while the crystalline volume fraction indicates the opposite change. Results of XRD indicate that thin films have a (220) preferable orientation under certain conditions. Microcrystalline silicon solar cells with conversion efficiency 4. 7% and micromorph tandem solar cells 8.5% were fabricated by VHF-PECVD (p layer and i layer of microcrystalline silicon solar cells were deposited in P chamber), respectively.展开更多
Currently, a conventional two-step method has been used to generate black silicon (BS) surfaces on silicon substrates for solar cell manufacturing. However, the performances of the solar cell made with such surface ...Currently, a conventional two-step method has been used to generate black silicon (BS) surfaces on silicon substrates for solar cell manufacturing. However, the performances of the solar cell made with such surface generation method are poor, because of the high surface recombination caused by deep etching in the conventional surface generation method for BS. In this work, a modified wet chemical etching solution with additives was developed. A homogeneous BS layer with random porous structure was obtained from the modified solution in only one step at room temperature. The BS layer had low reflectivity and shallow etching depth. The additive in the etch solution performs the function of pH-modulation. After 16-min etching, the etching depth in the samples was approximately 200 nm, and the spectrum-weighted-reflectivity in the range from 300 nm to 1200 nm was below 5%. BS solar cells were fabricated in the production line. The decreased etching depth can improve the electrical performance of solar cells because of the decrease in surface recombination. An efficiency of 15.63% for the modified etching BS solar cells was achieved on a large area, p- type single crystalline silicon substrate with a 624.32-mV open circuit voltage and a 77.88% fill factor.展开更多
The bifacial silicon solar cell subjected to a magnetic field, is illuminated by the back side by a monochromatic light in frequency modulation, with high absorption, At minority carriers diffusion coefficient resonan...The bifacial silicon solar cell subjected to a magnetic field, is illuminated by the back side by a monochromatic light in frequency modulation, with high absorption, At minority carriers diffusion coefficient resonance frequency, a graphical study of the expressions of recombination velocity on the rear side is carried out. The optimum thickness of the base of the bifacial solar cell is deduced for each resonance frequency.展开更多
Polycrystalline Si(poly-Si)-based passivating contacts are promising candidates for high-efficiency crystalline Si solar cells.We show that nanosecond-scale pulsed laser melting(PLM)is an industrially viable technique...Polycrystalline Si(poly-Si)-based passivating contacts are promising candidates for high-efficiency crystalline Si solar cells.We show that nanosecond-scale pulsed laser melting(PLM)is an industrially viable technique to fabricate such contacts with precisely controlled dopant concentration profiles that exceed the solid solubility limit.We demonstrate that conventionally doped,hole-selective poly-Si/SiO_(x)contacts that provide poor surface passivation of c-Si can be replaced with Ga-or B-doped contacts based on non-equilibrium doping.We overcome the solid solubility limit for both dopants in poly-Si by rapid cooling and recrystallization over a timescale of∼25 ns.We show an active Ga dopant concentration of∼3×10^(20)cm^(−3)in poly-Si which is six times higher than its solubility limit in c-Si,and a B dopant concentration as high as∼10^(21) cm^(−3).We measure an implied open-circuit voltage of 735 mV for Ga-doped poly-Si/SiO_(x)contacts on Czochralski Si with a low contact resistivity of 35.5±2.4 mΩcm^(2).Scanning spreading resistance microscopy and Kelvin probe force microscopy show large diffusion and drift current in the p-n junction that contributes to the low contact resistivity.Our results suggest that PLM can be extended for hyperdoping of other semiconductors with low solubility atoms to enable high-efficiency devices.展开更多
The bifacial silicon solar cell, placed at temperature (T) and illuminated from the back side by monochromatic light in frequency modulation (ω), is studied from the frequency dynamic diffusion equation, relative to ...The bifacial silicon solar cell, placed at temperature (T) and illuminated from the back side by monochromatic light in frequency modulation (ω), is studied from the frequency dynamic diffusion equation, relative to the density of excess minority carriers in the base. The expressions of the dynamic recombination velocities of the minority carriers on the rear side of the base Sb1(D(ω, T);H) and Sb2(α, D(ω, T);H), are analyzed as a function of the dynamic diffusion coefficient (D(ω, T)), the absorption coefficient (α(λ)) and the thickness of the base (H). Thus their graphic representation makes it possible to go up, to the base optimum thickness (Hopt(ω, T)), for different temperature values and frequency ranges of modulation of monochromatic light, of strong penetration. The base optimum thickness (Hopt(ω, T)) decreases with temperature, regardless of the frequency range and allows the realization of the solar cell with few material (Si).展开更多
The effects of surface texturing on spherical silicon solar cells were investigated. Surface texturing for spherical Si solar cells was prepared by immersing p-type spherical Si crystals in KOH solution with stirring....The effects of surface texturing on spherical silicon solar cells were investigated. Surface texturing for spherical Si solar cells was prepared by immersing p-type spherical Si crystals in KOH solution with stirring. Two kinds of texture feature sizes (1 and 5 μm pyramids) were prepared by changing stirring speed. After fabrication through our baseline processes, these cells were evaluated by solar cell performance and external quantum efficiency. The cell with 1 and 5 μm pyramids shows the short circuit current density (Jsc) value of 31.9 and 33.2 mA·cm-2, which is 9% and 13% relative increase compared to the cell without texturing. Furthermore, the cell with 5 μm pyramids has a higher open-circuit voltage (0.589 V) than the cell with 1 μm pyramids (0.577 V). As a result, the conversion efficiency was improved from 11.4% for the cell without texturing to 12.1% for the cell with 5 μm pyramids.展开更多
Interdigitated back contact(IBC) solar cells can achieve a very high efficiency due to its less optical losses. But IBC solar cells demand for high quality passivation of the front surface. In this paper, a polycrys...Interdigitated back contact(IBC) solar cells can achieve a very high efficiency due to its less optical losses. But IBC solar cells demand for high quality passivation of the front surface. In this paper, a polycrystalline silicon/SiO_2 stack structure as front surface field to passivate the front surface of IBC solar cells is proposed. The passivation quality of this structure is investigated by two dimensional simulations. Polycrystalline silicon layer and SiO_2 layer are optimized to get the best passivation quality of the IBC solar cell. Simulation results indicate that the doping level of polycrystalline silicon should be high enough to allow a very thin polycrystalline silicon layer to ensure an effective passivation and small optical losses at the same time. The thickness of SiO_2 should be neither too thin nor too thick, and the optimal thickness is 1.2 nm.Furthermore, the lateral transport properties of electrons are investigated, and the simulation results indicate that a high doping level and conductivity of polycrystalline silicon can improve the lateral transportation of electrons and then the cell performance.展开更多
This paper identifies the contributions of p-a-SiC:H layers and i-a-Si:H layers to the open circuit voltage of p-i-n type a-Si:H solar cells deposited at a low temperature of 125℃. We find that poor quality p-a-Si...This paper identifies the contributions of p-a-SiC:H layers and i-a-Si:H layers to the open circuit voltage of p-i-n type a-Si:H solar cells deposited at a low temperature of 125℃. We find that poor quality p-a-SiC:H films under regular conditions lead to a restriction of open circuit voltage although the band gap of the i-layer varies widely. A significant improvement in open circuit voltage has been obtained by using high quality p-~SiC:H films optimized at the "low-power regime" under low silane flow rates and high hydrogen dilution conditions.展开更多
Emitted multi-crystalline silicon and black silicon solar cells are conformal doped by ion implantation using the plasma immersion ion implantation (PⅢ) technique. The non-uniformity of emitter doping is lower than...Emitted multi-crystalline silicon and black silicon solar cells are conformal doped by ion implantation using the plasma immersion ion implantation (PⅢ) technique. The non-uniformity of emitter doping is lower than 5 %. The secondary ion mass spectrometer profile indicates that the PⅢ technique obtained 100-rim shallow emitter and the emitter depth could be impelled by furnace annealing to 220 nm and 330 nm at 850 ℃ with one and two hours, respectively. Furnace annealing at 850 ℃ could effectively electrically activate the dopants in the silicon. The efficiency of the black silicon solar cell is 14.84% higher than that of the mc-silicon solar cell due to more incident light being absorbed.展开更多
In order to enhance the p-type doping concentration in the LBSF, boron was added into the aluminum paste and boron doped local back surface field(B-LBSF) was successfully fabricated in this work. Through boron dopin...In order to enhance the p-type doping concentration in the LBSF, boron was added into the aluminum paste and boron doped local back surface field(B-LBSF) was successfully fabricated in this work. Through boron doping in the LBSF, much higher doping concentration was observed for the B-LBSF over the Al-LBSF. Higher doping concentration in the LBSF is expected to lead to better rear passivation and lower rear contact resistance. Based on one thousand pieces of solar cells for each type, it was found that the rear passivated crystalline silicon solar cells with B-LBSF showed statistical improvement in their photovoltaic properties over those with Al-LBSF.展开更多
Hydrogenated silicon (Si:H) thin films for application in solar ceils were deposited by using very high frequency plasma enhanced chemical vapour deposition (VHF PECVD) at a substrate temperature of about 170 ℃,...Hydrogenated silicon (Si:H) thin films for application in solar ceils were deposited by using very high frequency plasma enhanced chemical vapour deposition (VHF PECVD) at a substrate temperature of about 170 ℃, The electrical, structural, and optical properties of the films were investigated. The deposited films were then applied as i-layers for p-i-n single junction solar cells. The current-voltage (I - V) characteristics of the cells were measured before and after the light soaking. The results suggest that the films deposited near the transition region have an optimum properties for application in solar cells. The cell with an i-layer prepared near the transition region shows the best stable performance.展开更多
基金supported by the National Natural Science Foundation of China(No.61504155)。
文摘Mono-crystalline silicon solar cells with a passivated emitter rear contact(PERC)configuration have attracted extensive attention from both industry and scientific communities.A record efficiency of 24.06%on p-type silicon wafer and mass production efficiency around 22%have been demonstrated,mainly due to its superior rear side passivation.In this work,the PERC solar cells with a p-type silicon wafer were numerically studied in terms of the surface passivation,quality of silicon wafer and metal electrodes.A rational way to achieve a 24%mass-production efficiency was proposed.Free energy loss analyses were adopted to address the loss sources with respect to the limit efficiency of 29%,which provides a guideline for the design and manufacture of a high-efficiency PERC solar cell.
基金the financial support of National Key Research and Development Program of China(Grant No.2023YFB4202503)the Joint Funds of the National Natural Science Foundation of China(Grant No.U21A2072)+7 种基金Natural Science Foundation of China(Grant No.62274099)Natural Science Foundation of Tianjin(No.20JCQNJC02070)China Postdoctoral Science Foundation(No.2020T130317)the Overseas Expertise Introduction Project for Discipline Innovation of Higher Education of China(Grant No.B16027)Tianjin Science and Technology Project(Grant No.18ZXJMTG00220)Key R&D Program of Hebei Province(No.19214301D)provided by the Haihe Laboratory of Sustainable Chemical Transformationsthe Fundamental Research Funds for the Central Universities,Nankai University.
文摘Monolithic textured perovskite/silicon tandem solar cells(TSCs)are expected to achieve maximum light capture at the lowest cost,potentially exhibiting the best power conversion efficiency.However,it is challenging to fabricate high-quality perovskite films and preferred crystal orientation on commercially textured silicon substrates with micrometersize pyramids.Here,we introduced a bulky organic molecule(4-fluorobenzylamine hydroiodide(F-PMAI))as a perovskite additive.It is found that F-PMAI can retard the crystallization process of perovskite film through hydrogen bond interaction between F^(−)and FA^(+)and reduce(111)facet surface energy due to enhanced adsorption energy of F-PMAI on the(111)facet.Besides,the bulky molecular is extruded to the bottom and top of perovskite film after crystal growth,which can passivate interface defects through strong interaction between F-PMA+and undercoordinated Pb^(2+)/I^(−).As a result,the additive facilitates the formation of large perovskite grains and(111)preferred orientation with a reduced trap-state density,thereby promoting charge carrier transportation,and enhancing device performance and stability.The perovskite/silicon TSCs achieved a champion efficiency of 30.05%based on a silicon thin film tunneling junction.In addition,the devices exhibit excellent longterm thermal and light stability without encapsulation.This work provides an effective strategy for achieving efficient and stable TSCs.
基金Project supported by the Key-Area Research and Development Program of Guangdong Province,China (Grant No.2021B0101260001)Guangdong Basic and Applied Basic Research Foundation (Grant No.2019A1515110411)the National Natural Science Foundation of China (Grant No.61904201)。
文摘Silicon passivated emitter and rear contact(PERC) solar cells with V-groove texture were fabricated using maskless alkaline solution etching with in-house developed additive. Compared with the traditional pyramid texture, the V-groove texture possesses superior effective minority carrier lifetime, enhanced p–n junction quality and better applied filling factor(FF). In addition, a V-groove texture can greatly reduce the shading area and edge damage of front Ag electrodes when the V-groove direction is parallel to the gridline electrodes. Due to these factors, the V-groove solar cells have a higher efficiency(21.78%) than pyramid solar cells(21.62%). Interestingly, external quantum efficiency(EQE) and reflectance of the V-groove solar cells exhibit a slight decrease when the incident light angle(θ) is increased from 0° to 75°, which confirms the excellent quasi omnidirectionality of the V-groove solar cells. The proposed V-groove solar cell design shows a 2.84% relative enhancement of energy output over traditional pyramid solar cells.
文摘This article presents a three-dimensional analysis of the impact of the angle of incidence of the magnetic field intensity on the electrical performance (series resistance, shunt resistance) of a bifacial polycrystalline silicon solar cell. The cell is illuminated simultaneously from both sides. The continuity equation for the excess minority carriers is solved at the emitter and at the depth of the base respectively. The analytical expressions for photocurrent density, photovoltage, series resistance and shunt resistance were deduced. Using these expressions, the values of the series and shunt resistances were extracted for different values of the angle of incidence of the magnetic field intensity. The study shows that as the angle of incidence increases, the slopes of the minority carrier density for the two modes of operation of the solar cell decrease. This is explained by a drop in the accumulation of carriers in the area close to the junction due to the fact that the Lorentz force is unable to drive the carriers towards the lateral surfaces due to the weak action of the magnetic field, which tends to cancel out as the incidence angle increases, and consequently a drop in the open circuit photovoltage. This, in turn, reduces the Lorentz force. These results predict that the p-n junction of the solar cell will not heat up. The study also showed a decrease in series resistance as the incidence angle of the magnetic field intensity increased from 0 rad to π/2 rad and an increase in shunt resistance as the incidence angle increased. His behaviour of the electrical parameters when the angle of incidence of the field from 0 rad to π/2 rad shows that the decreasing magnetic field vector tends to be collinear with the electron trajectory. This allows them to cross the junction and participate in the external current. The best orientation for the Lorentz force is zero, in which case the carriers can move easily towards the junction.
文摘The monocrystalline silicon is a promising material that could be used in solar cells that convert light into electricity. Although the cost of ordinary silicon (Si) solar cells has decreased significantly over the past two decades, the conversion efficiency of these cells has remained relatively high. While solar cells have a great potential as a device of renewable energy, the high cost they incur per Watt continues to be a significant barrier to their widespread implementation. As a consequence, it is vital to conduct research into alternate materials that may be used in the construction of solar cells. The heterojunction solar cell (HJSC), which is based on n-type zinc oxide (n-ZnO) and p-type silicon (p-Si), is one of the numerous alternatives of the typical Si single homojunction solar cell. There are many deficiencies that can be found in the published research on n-ZnO/p-Si heterojunction solar cell. Inconsistencies in the stated value of open circuit voltage (V<sub>oc</sub>) of the solar cell are one example of deficiency. The absence of a full theoretical study to evaluate the potential of the solar cell structure is another deficiency that can be found in these researches. A lower value of experimentally obtained V<sub>OC</sub> in comparison to the theoretical prediction based on the band-gap between n-ZnO and p-Si. There needs to be more consensus among scientists regarding the optimal conditions for the growth of zinc oxide. Many software’s are available for simulating and optimizing the solar cells based on these parameters. For this purpose, in this dissertation, I provide computational results relevant to n-ZnO/p-Si HJSC to overcome deficiencies that have been identified. While modeling and simulating the potential of the solar cell structure with AFORS-HET, it is essential to consider the constraints that exist in the real world. AFORS-HET was explicitly designed to mimic the multilayer solar cell arrangement. In AFORS-HET, we can add up to seven layers for solar cell layout. By using this software, we can figure out the open circuit voltage (V<sub>OC</sub>), the short circuit current (J<sub>SC</sub>), the quantum efficiency (QE, %), the heterojunction energy band structure, and the power conversion efficiency (PCE).
基金Project supported by the National High Technology Research and Development Program of China(No.2007AA05Z437)
文摘Etching was performed on (100) silicon wafers using silicon-dissolved tetramethylammonium hydroxide (TMAH) solutions without the addition of surfactant. Experiments were carried out in different TMAH concentrations at different temperatures for different etching times. The surface phenomena, etching rates, surface morphology and surface reflectance were analyzed. Experimental results show that the resulting surface covered with uniform pyramids can be realized with a small change in etching rates during the etching process. The etching mechanism is explained based on the experimental results and the theoretical considerations. It is suggested that all the components in the TMAH solutions play important roles in the etching process. Moreover, TMA^+ ions may increase the wettability of the textured surface. A good textured surface can be obtained in conditions where the absorption of OH-/H2O is in equilibrium with that of TMA+/SiO2(OH)2^-.
基金This work was supported by Zhejiang Energy Group(znkj-2018-118)Key Research and Development Program of Zhejiang Province(2021C01006)+5 种基金Key Project of Zhejiang Province(2021C04009)Science and technology projects in Liaoning Province 2021(2021JH1/10400104)Ningbo“Innovation 2025”Major Project(2020Z098)National Key R&D Program of China(2018YFB1500403)National Natural Science Foundation of China(61974178,61874177,62004199)Youth Innovation Promotion Association(2018333).
文摘In this work,we developed a simple and direct circuit model with a dual two-diode model that can be solved by a SPICE numerical simulation to comprehensively describe the monolithic perovskite/crystalline silicon(PVS/c-Si)tandem solar cells.We are able to reveal the effects of different efficiency-loss mechanisms based on the illuminated current density-voltage(J-V),semi-log dark J-V,and local ideality factor(m-V)curves.The effects of the individual efficiency-loss mechanism on the tandem cell’s efficiency are discussed,including the exp(V/VT)and exp(V/2VT)recombination,the whole cell’s and subcell’s shunts,and the Ohmic-contact or Schottky-contact of the intermediate junction.We can also fit a practical J-V curve and find a specific group of parameters by the trial-and-error method.Although the fitted parameters are not a unique solution,they are valuable clues for identifying the efficiency loss with the aid of the cell’s structure and experimental processes.This method can also serve as an open platform for analyzing other tandem solar cells by substituting the corresponding circuit models.In summary,we developed a simple and effective methodology to diagnose the efficiency-loss source of a monolithic PVS/c-Si tandem cell,which is helpful to researchers who wish to adopt the proper approaches to improve their solar cells.
基金supported by the National Natural Science Foundation of China (Grant Nos.52202276 and 51821002)the China Postdoctoral Science Foundation (Grant No.2022M712300)+1 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No.22KJB480010)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)。
文摘The ultraviolet(UV)light stability of silicon heterojunction(SHJ)solar cells should be addressed before large-scale production and applications.Introducing downshifting(DS)nanophosphors on top of solar cells that can convert UV light to visible light may reduce UV-induced degradation(UVID)without sacrificing the power conversion efficiency(PCE).Herein,a novel composite DS nanomaterial composed of YVO_(4):Eu^(3+),Bi^(3+)nanoparticles(NPs)and AgNPs was synthesized and introduced onto the incident light side of industrial SHJ solar cells to achieve UV shielding.The YVO_(4):Eu^(3+),Bi^(3+)NPs and Ag NPs were synthesized via a sol-gel method and a wet chemical reduction method,respectively.Then,a composite structure of the YVO_(4):Eu^(3+),Bi^(3+)NPs decorated with Ag NPs was synthesized by an ultrasonic method.The emission intensities of the YVO_(4):Eu^(3+),Bi^(3+)nanophosphors were significantly enhanced upon decoration with an appropriate amount of~20 nm Ag NPs due to the localized surface plasmon resonance(LSPR)effect.Upon the introduction of LSPR-enhanced downshifting,the SHJ solar cells exhibited an~0.54%relative decrease in PCE degradation under UV irradiation with a cumulative dose of 45 k W h compared to their counterparts,suggesting excellent potential for application in UV-light stability enhancement of solar cells or modules.
基金supported by Fundamental Research Project of Uzbekistan(FZ-2020092973).
文摘Today,it has become an important task to modify existing traditional silicon-based solar cell factory to produce high-efficiency silicon-based heterojunction solar cells,at a lower cost.Therefore,the aim of this paper is to analyze CH_(3)NH_(3)PbI_(3) and ZnO materials as an emitter layer for p-type silicon wafer-based heterojunction solar cells.CH_(3)NH_(3)PbI_(3) and ZnO can be synthesized using the cheap Sol-Gel method and can form n-type semiconductor.We propose to combine these two materials since CH_(3)NH_(3)PbI_(3) is a great light absorber and ZnO has an optimal complex refractive index which can be used as antireflection material.The photoelectric parameters of n-CH_(3)NH_(3)PbI_(3)/p-Si,n-ZnO/p-Si,and n-Si/p-Si solar cells have been studied in the range of 20–200 nm of emitter layer thickness.It has been found that the short circuit current for CH_(3)NH_(3)PbI_(3)/p-Si and n-ZnO/p-Si solar cells is almost the same when the emitter layer thickness is in the range of 20–100 nm.Additionally,when the emitter layer thickness is greater than 100 nm,the short circuit current of CH_(3)NH_(3)PbI_(3)/p-Si exceeds that of n-ZnO/p-Si.The optimal emitter layer thickness for n-CH_(3)NH_(3)PbI_(3)/p-Si and n-ZnO/p-Si was found equal to 80 nm.Using this value,the short-circuit current and the fill factor were estimated around 18.27 mA/cm^(2) and 0.77 for n-CH_(3)NH_(3)PbI_(3)/p-Si and 18.06 mA/cm^(2) and 0.73 for n-ZnO/p-Si.Results show that the efficiency of n-CH_(3)NH_(3)PbI_(3)/p-Si and n-ZnO/p-Si solar cells with an emitter layer thickness of 80 nm are 1.314 and 1.298 times greater than efficiency of traditional n-Si/p-Si for the same sizes.These findings will help perovskites materials to be more appealing in the PV industry and accelerate their development to become a viable alternative in the renewable energy sector.
文摘A series of microcrystalline silicon thin films were fabricated by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) at different silane concentrations in a P chamber. Through analysis of the structural and electrical properties of these materials,we conclude that the photosensitivity slightly decreased then increased as the silane concentration increased,while the crystalline volume fraction indicates the opposite change. Results of XRD indicate that thin films have a (220) preferable orientation under certain conditions. Microcrystalline silicon solar cells with conversion efficiency 4. 7% and micromorph tandem solar cells 8.5% were fabricated by VHF-PECVD (p layer and i layer of microcrystalline silicon solar cells were deposited in P chamber), respectively.
文摘Currently, a conventional two-step method has been used to generate black silicon (BS) surfaces on silicon substrates for solar cell manufacturing. However, the performances of the solar cell made with such surface generation method are poor, because of the high surface recombination caused by deep etching in the conventional surface generation method for BS. In this work, a modified wet chemical etching solution with additives was developed. A homogeneous BS layer with random porous structure was obtained from the modified solution in only one step at room temperature. The BS layer had low reflectivity and shallow etching depth. The additive in the etch solution performs the function of pH-modulation. After 16-min etching, the etching depth in the samples was approximately 200 nm, and the spectrum-weighted-reflectivity in the range from 300 nm to 1200 nm was below 5%. BS solar cells were fabricated in the production line. The decreased etching depth can improve the electrical performance of solar cells because of the decrease in surface recombination. An efficiency of 15.63% for the modified etching BS solar cells was achieved on a large area, p- type single crystalline silicon substrate with a 624.32-mV open circuit voltage and a 77.88% fill factor.
文摘The bifacial silicon solar cell subjected to a magnetic field, is illuminated by the back side by a monochromatic light in frequency modulation, with high absorption, At minority carriers diffusion coefficient resonance frequency, a graphical study of the expressions of recombination velocity on the rear side is carried out. The optimum thickness of the base of the bifacial solar cell is deduced for each resonance frequency.
基金the National Renewable Energy Laboratory,operated by Alliance for Sustainable Energy,LLC,for the U.S.Department of Energy(DOE)under Contract No.DE-AC36-08GO28308.
文摘Polycrystalline Si(poly-Si)-based passivating contacts are promising candidates for high-efficiency crystalline Si solar cells.We show that nanosecond-scale pulsed laser melting(PLM)is an industrially viable technique to fabricate such contacts with precisely controlled dopant concentration profiles that exceed the solid solubility limit.We demonstrate that conventionally doped,hole-selective poly-Si/SiO_(x)contacts that provide poor surface passivation of c-Si can be replaced with Ga-or B-doped contacts based on non-equilibrium doping.We overcome the solid solubility limit for both dopants in poly-Si by rapid cooling and recrystallization over a timescale of∼25 ns.We show an active Ga dopant concentration of∼3×10^(20)cm^(−3)in poly-Si which is six times higher than its solubility limit in c-Si,and a B dopant concentration as high as∼10^(21) cm^(−3).We measure an implied open-circuit voltage of 735 mV for Ga-doped poly-Si/SiO_(x)contacts on Czochralski Si with a low contact resistivity of 35.5±2.4 mΩcm^(2).Scanning spreading resistance microscopy and Kelvin probe force microscopy show large diffusion and drift current in the p-n junction that contributes to the low contact resistivity.Our results suggest that PLM can be extended for hyperdoping of other semiconductors with low solubility atoms to enable high-efficiency devices.
文摘The bifacial silicon solar cell, placed at temperature (T) and illuminated from the back side by monochromatic light in frequency modulation (ω), is studied from the frequency dynamic diffusion equation, relative to the density of excess minority carriers in the base. The expressions of the dynamic recombination velocities of the minority carriers on the rear side of the base Sb1(D(ω, T);H) and Sb2(α, D(ω, T);H), are analyzed as a function of the dynamic diffusion coefficient (D(ω, T)), the absorption coefficient (α(λ)) and the thickness of the base (H). Thus their graphic representation makes it possible to go up, to the base optimum thickness (Hopt(ω, T)), for different temperature values and frequency ranges of modulation of monochromatic light, of strong penetration. The base optimum thickness (Hopt(ω, T)) decreases with temperature, regardless of the frequency range and allows the realization of the solar cell with few material (Si).
基金This work was partly financially supported by NEDO as an Investigation for Innovative PV Technology Project and Nisshin Electric Co., Ltd.
文摘The effects of surface texturing on spherical silicon solar cells were investigated. Surface texturing for spherical Si solar cells was prepared by immersing p-type spherical Si crystals in KOH solution with stirring. Two kinds of texture feature sizes (1 and 5 μm pyramids) were prepared by changing stirring speed. After fabrication through our baseline processes, these cells were evaluated by solar cell performance and external quantum efficiency. The cell with 1 and 5 μm pyramids shows the short circuit current density (Jsc) value of 31.9 and 33.2 mA·cm-2, which is 9% and 13% relative increase compared to the cell without texturing. Furthermore, the cell with 5 μm pyramids has a higher open-circuit voltage (0.589 V) than the cell with 1 μm pyramids (0.577 V). As a result, the conversion efficiency was improved from 11.4% for the cell without texturing to 12.1% for the cell with 5 μm pyramids.
基金supported by the National Natural Science Foundation of China(Grant Nos.11104319,11274346,51202285,61234005,51172268,51602340,61274059,and 51402347)the Solar Energy Action Plan of Chinese Academy of Sciences(Grant Nos.Y1YT064001,Y1YF034001,and Y2YF014001)+2 种基金the Graduate and College Student’s Innovative Project(Grant No.YC2016-X19)the Project of Beijing Municipal Science and Technology Commission(Grant No.Z151100003515003)the Opening Project of Key Laboratory of Microelectronics Devices&Integrated Technology,Institute of Microelectronics,Chinese Academy of Sciences
文摘Interdigitated back contact(IBC) solar cells can achieve a very high efficiency due to its less optical losses. But IBC solar cells demand for high quality passivation of the front surface. In this paper, a polycrystalline silicon/SiO_2 stack structure as front surface field to passivate the front surface of IBC solar cells is proposed. The passivation quality of this structure is investigated by two dimensional simulations. Polycrystalline silicon layer and SiO_2 layer are optimized to get the best passivation quality of the IBC solar cell. Simulation results indicate that the doping level of polycrystalline silicon should be high enough to allow a very thin polycrystalline silicon layer to ensure an effective passivation and small optical losses at the same time. The thickness of SiO_2 should be neither too thin nor too thick, and the optimal thickness is 1.2 nm.Furthermore, the lateral transport properties of electrons are investigated, and the simulation results indicate that a high doping level and conductivity of polycrystalline silicon can improve the lateral transportation of electrons and then the cell performance.
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2009AA05Z422), the National Basic Research Program of China (Grant Nos. 2011CBA00705, 2011CBA00706, and 2011CBA00707), and the Natural Science Foundation of Tianjin (Grant No. 08JCZDJC22200).
文摘This paper identifies the contributions of p-a-SiC:H layers and i-a-Si:H layers to the open circuit voltage of p-i-n type a-Si:H solar cells deposited at a low temperature of 125℃. We find that poor quality p-a-SiC:H films under regular conditions lead to a restriction of open circuit voltage although the band gap of the i-layer varies widely. A significant improvement in open circuit voltage has been obtained by using high quality p-~SiC:H films optimized at the "low-power regime" under low silane flow rates and high hydrogen dilution conditions.
基金supported by the National Natural Science Foundation of China(Grant Nos.61106060 and 61274059)the National High Technology Research and Development Program of China(Grant No.2012AA052401)
文摘Emitted multi-crystalline silicon and black silicon solar cells are conformal doped by ion implantation using the plasma immersion ion implantation (PⅢ) technique. The non-uniformity of emitter doping is lower than 5 %. The secondary ion mass spectrometer profile indicates that the PⅢ technique obtained 100-rim shallow emitter and the emitter depth could be impelled by furnace annealing to 220 nm and 330 nm at 850 ℃ with one and two hours, respectively. Furnace annealing at 850 ℃ could effectively electrically activate the dopants in the silicon. The efficiency of the black silicon solar cell is 14.84% higher than that of the mc-silicon solar cell due to more incident light being absorbed.
基金Funded by the National Natural Science Foundation of China(61366004)the Research Fund for the Doctoral Program of Higher Education(20123601110006)the Jiangxi Provincial Department of Education(KJLD13008)
文摘In order to enhance the p-type doping concentration in the LBSF, boron was added into the aluminum paste and boron doped local back surface field(B-LBSF) was successfully fabricated in this work. Through boron doping in the LBSF, much higher doping concentration was observed for the B-LBSF over the Al-LBSF. Higher doping concentration in the LBSF is expected to lead to better rear passivation and lower rear contact resistance. Based on one thousand pieces of solar cells for each type, it was found that the rear passivated crystalline silicon solar cells with B-LBSF showed statistical improvement in their photovoltaic properties over those with Al-LBSF.
文摘Hydrogenated silicon (Si:H) thin films for application in solar ceils were deposited by using very high frequency plasma enhanced chemical vapour deposition (VHF PECVD) at a substrate temperature of about 170 ℃, The electrical, structural, and optical properties of the films were investigated. The deposited films were then applied as i-layers for p-i-n single junction solar cells. The current-voltage (I - V) characteristics of the cells were measured before and after the light soaking. The results suggest that the films deposited near the transition region have an optimum properties for application in solar cells. The cell with an i-layer prepared near the transition region shows the best stable performance.