Coating a glass monocapillary x-ray optics with high-density film is a promising way to improve transmission characteristics. For a long time, it has been a challenge to coat a high-density film in the inside of monoc...Coating a glass monocapillary x-ray optics with high-density film is a promising way to improve transmission characteristics. For a long time, it has been a challenge to coat a high-density film in the inside of monocapillary with an extremely high length-to-diameter ratio. In this work, Hf O2 film is deposited on the inner wall of a tapered glass monocapillary with length 9.9 cm, entrance diameter 596.4 μm, and exit diameter 402.3 μm by atomic layer deposition. The coated and uncoated monocapillaries are studied by the transmission process of x-rays with energy from 5 ke V to 100 ke V and the x-ray fluorescence(XRF) spectra of a Mo sample are detected. Improved transmission characteristics have been obtained for the Hf O2-coated monocapillary. The energy upper limit of focused x-rays increases from 18.1 ke V to 33.0 ke V and the ‘penetration halo’ is suppressed to some extent. The XRF spectrum presents two stronger peaks at ~ 17.4 ke V and~ 19.6 ke V which are considered as the characteristic x-rays of Mo Kα and Mo Kβ. These results reveal that more higher energy x-rays from the W x-ray tube are totally reflected on the inner wall of the Hf O2-coated glass monocapillary due to the increase of total reflection critical angle. This work is significant for more applications of monocapillary in higher energy x-ray field.展开更多
基金the National Key Research and Development Program of China(Grant No.2018YFF0109100)Fund from the Institute of Electrical Engineering,Chinese Academy of Sciences(Grant No.E1554404)the National Natural Science Foundation of China(Grant Nos.11675019 and 11875087).
文摘Coating a glass monocapillary x-ray optics with high-density film is a promising way to improve transmission characteristics. For a long time, it has been a challenge to coat a high-density film in the inside of monocapillary with an extremely high length-to-diameter ratio. In this work, Hf O2 film is deposited on the inner wall of a tapered glass monocapillary with length 9.9 cm, entrance diameter 596.4 μm, and exit diameter 402.3 μm by atomic layer deposition. The coated and uncoated monocapillaries are studied by the transmission process of x-rays with energy from 5 ke V to 100 ke V and the x-ray fluorescence(XRF) spectra of a Mo sample are detected. Improved transmission characteristics have been obtained for the Hf O2-coated monocapillary. The energy upper limit of focused x-rays increases from 18.1 ke V to 33.0 ke V and the ‘penetration halo’ is suppressed to some extent. The XRF spectrum presents two stronger peaks at ~ 17.4 ke V and~ 19.6 ke V which are considered as the characteristic x-rays of Mo Kα and Mo Kβ. These results reveal that more higher energy x-rays from the W x-ray tube are totally reflected on the inner wall of the Hf O2-coated glass monocapillary due to the increase of total reflection critical angle. This work is significant for more applications of monocapillary in higher energy x-ray field.