Monochiral single-walled carbon nanotubes(SWCNTs)can enable high-performance carbon-based electronic devices and integrated circuits.However,their fabrication often requires complex SWCNT purification and enrichment.H...Monochiral single-walled carbon nanotubes(SWCNTs)can enable high-performance carbon-based electronic devices and integrated circuits.However,their fabrication often requires complex SWCNT purification and enrichment.Herein,we showed that isoindigo-based polymer derivatives(PDPPIID and PFIID)directly enriched(9,8)nanotubes from as-synthesized SWCNT powders selectively and efficiently to yield high concentration(9,8)nanotube inks.The selective wrapping mechanism was elucidated by classical full-atomistic molecular dynamic(MD)simulations.Thin-film transistors(TFTs)were fabricated by depositing the SWCNT ink into device channels using aerosol jet printing.TFT performance was strongly influenced by polymer residues,the deposition condition(humidity),and ink concentration.Optimized TFTs showed excellent device-to-device uniformity with 108 on/off ratios.Further,optoelectronic transistors were fabricated,and their photoelectrical neuromorphic characteristics,storage,memory,and logic functions were characterized under the pulsed light and voltage stimulations,demonstrating excellent application potentials.展开更多
基金supported by the National Key Research and Development Program of China(No.2020YFA0714700)the National Natural Science Foundation of China(No.61874132)+5 种基金Key Research Program of Frontier Science of Chinese Academy of Sciences(No.QYZDB-SSWSLH031)the Shaanxi Province Natural Science Foundation(No.2017JM5063)Cooperation Project of Vacuum Interconnect Nano X Research Facility(No.NANO-X)of Suzhou nanotechnology and Nano-Bionics Institute,Chinese Academy of Sciences(No.E20045)China scholarship fund(No.201708615046)Y.C.acknowledges the Australian Research Council under the Future Fellowships scheme(No.FT160100107)M.T.thanks Prof.T.Okazaki(National Institute of Advanced Industrial Science and Technology)for experimental help.
文摘Monochiral single-walled carbon nanotubes(SWCNTs)can enable high-performance carbon-based electronic devices and integrated circuits.However,their fabrication often requires complex SWCNT purification and enrichment.Herein,we showed that isoindigo-based polymer derivatives(PDPPIID and PFIID)directly enriched(9,8)nanotubes from as-synthesized SWCNT powders selectively and efficiently to yield high concentration(9,8)nanotube inks.The selective wrapping mechanism was elucidated by classical full-atomistic molecular dynamic(MD)simulations.Thin-film transistors(TFTs)were fabricated by depositing the SWCNT ink into device channels using aerosol jet printing.TFT performance was strongly influenced by polymer residues,the deposition condition(humidity),and ink concentration.Optimized TFTs showed excellent device-to-device uniformity with 108 on/off ratios.Further,optoelectronic transistors were fabricated,and their photoelectrical neuromorphic characteristics,storage,memory,and logic functions were characterized under the pulsed light and voltage stimulations,demonstrating excellent application potentials.