期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Photo-induced doping effect and dynamic process in monolayer MoSe2 被引量:1
1
作者 Qian Yang Yongzhou Xue +2 位作者 Hao Chen Xiuming Dou Baoquan Sun 《Journal of Semiconductors》 EI CAS CSCD 2020年第8期63-67,共5页
Dynamic processes of electron transfer by optical doping in monolayer MoSe2 at 6 K are investigated via measuring time resolved photoluminescence(PL)traces under different excitation powers.Time-dependent electron tra... Dynamic processes of electron transfer by optical doping in monolayer MoSe2 at 6 K are investigated via measuring time resolved photoluminescence(PL)traces under different excitation powers.Time-dependent electron transfer process can be analyzed by a power-law distribution of t^−α withα=0.1-0.24,depending on the laser excitation power.The average electron transfer time of approximately 27.65 s is obtained in the excitation power range of 0.5 to 100μW.As the temperature increases from 20 to 44 K,the energy difference between the neutral and charged excitons is observed to decrease. 展开更多
关键词 photodoping monolayer mose2 dynamic process TEMPERATURE
下载PDF
Structural,electronic,and magnetic properties of vanadium atom-adsorbed MoSe2 monolayer
2
作者 Ping Llu Zhen-Zhen Qin +1 位作者 Yun-Liang Yue Xu Zuo 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第2期392-398,共7页
Using the first-principles calculations, we study the structural, electronic, and magnetic properties of vanadium adsorbed MoSe_2 monolayer, and the magnetic couplings between the V adatoms at different adsorption con... Using the first-principles calculations, we study the structural, electronic, and magnetic properties of vanadium adsorbed MoSe_2 monolayer, and the magnetic couplings between the V adatoms at different adsorption concentrations. The calculations show that the V atom is chemically adsorbed on the MoSe_2 monolayer and prefers the location on the top of an Mo atom surrounded by three nearest-neighbor Se atoms. The interatomic electron transfer from the V to the nearestneighbor Se results in the polarized covalent bond with weak covalency, associated with the hybridizations of V with Se and Mo. The V adatom induces local impurity states in the middle of the band gap of pristine MoSe_2, and the peak of density of states right below the Fermi energy is associated with the V- dz^2 orbital. A single V adatom induces a magnetic moment of 5 μBthat mainly distributes on the V-3d and Mo-4d orbitals. The V adatom is in high-spin state, and its local magnetic moment is associated with the mid-gap impurity states that are mainly from the V-3d orbitals. In addition,the crystal field squashes a part of the V-4s electrons into the V-3d orbitals, which enhances the local magnetic moment.The magnetic ground states at different adsorption concentrations are calculated by generalized gradient approximations(GGA) and GGA+U with enhanced electron localization. In addition, the exchange integrals between the nearest-neighbor V adatoms at different adsorption concentrations are calculated by fitting the first-principle total energies of ferromagnetic(FM) and antiferromagnetic(AFM) states to the Heisenberg model. The calculations with GGA show that there is a transition from ferromagnetic to antiferromagnetic ground state with increasing the distance between the V adatoms. We propose an exchange mechanism based on the on-site exchange on Mo and the hybridization between Mo and V, to explain the strong ferromagnetic coupling at a short distance between the V adatoms. However, the ferromagnetic exchange mechanism is sensitive to both the increased inter-adatom distance at low concentration and the enhanced electron localization by GGA+U, which leads to antiferromagnetic ground state, where the antiferromagnetic superexchange is dominant. 展开更多
关键词 V-adatom mose2 monolayer magnetic moment magnetic coupling first-principles calculation
下载PDF
MoSe2 porous microspheres comprising monolayer flakes with high electrocatalytic activity 被引量:9
3
作者 Yejun Zhang Qiufang Gong +3 位作者 Lun Li Hongchao Yang Yanguang Li Qiangbin Wang 《Nano Research》 SCIE EI CAS CSCD 2015年第4期1108-1115,共8页
A facile colloidal route to synthesize MoSe2 porous microspheres with diameters of 400-600 nm made up of MoSe2 monolayer flakes (-0.7 nm in thickness) is reported. The solvents trioctylamine (TOA) and oleylamine ... A facile colloidal route to synthesize MoSe2 porous microspheres with diameters of 400-600 nm made up of MoSe2 monolayer flakes (-0.7 nm in thickness) is reported. The solvents trioctylamine (TOA) and oleylamine (OAM) are found to play important roles in the formation of MoSe2 microspheres, whereby TOA determines the three-dimensional (3D) microspherical morphology and OAM directs the formation of MoSes monolayer flakes. The robust 3D MoSe2 microspheres exhibit remarkable activity and durability for the electrocatalytic hydrogen evolution reaction (HER) in acid, maintaining a small onset overpotential of -77 mV and keeping a small overpotential of 100 mV for a current density of 5 mA/cm2 after 1,000 cycles. In addition, similar 3D WSe2 microspheres can also be prepared by using this method. We expect this facile colloidal route could further be expanded to synthesize other porous structures which will find applications in fields such as in energy storage, catalysis, and sensing. 展开更多
关键词 mose2 transition-metalchalcogenides porous microspheres monolayer flakes electrocatalytic activity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部