The acoustic-phonon emission from monolayer molybdenum disulfide(ML-MoS_(2))driven by a direct-current electric field is studied theoretically using the Boltzmann equation method.It is found that the Cerenkov emission...The acoustic-phonon emission from monolayer molybdenum disulfide(ML-MoS_(2))driven by a direct-current electric field is studied theoretically using the Boltzmann equation method.It is found that the Cerenkov emission of terahertz acoustic-phonons can be generated when a very weak electric field is applied to ML-MoS_(2).The physical mechanisms of acoustic-phonon emission are analyzed from the perspective of condensed matter physics.The acoustic-phonon emission from ML-MoS_(2)is also compared with those from graphene and GaAs.The results reveal that the frequencies of acousticphonons generated by ML-MoS_(2)are between the frequencies of those generated from GaAs and graphene.The results of this work suggest that the ML-MoS_(2)can make up for graphene and GaAs in respect of acoustic-phonon emission and be used in tunable hypersonic devices such as terahertz sound sources.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11604192)the Fundamental Research Program of Shanxi Province,China(Grant No.202103021224250)+1 种基金the Science and Technology Innovation Project of Colleges and Universities of Shanxi Province of China(Grant No.2020L0242)the Start-up funding from Shanxi Normal University(Grant No.0505/02070351)
文摘The acoustic-phonon emission from monolayer molybdenum disulfide(ML-MoS_(2))driven by a direct-current electric field is studied theoretically using the Boltzmann equation method.It is found that the Cerenkov emission of terahertz acoustic-phonons can be generated when a very weak electric field is applied to ML-MoS_(2).The physical mechanisms of acoustic-phonon emission are analyzed from the perspective of condensed matter physics.The acoustic-phonon emission from ML-MoS_(2)is also compared with those from graphene and GaAs.The results reveal that the frequencies of acousticphonons generated by ML-MoS_(2)are between the frequencies of those generated from GaAs and graphene.The results of this work suggest that the ML-MoS_(2)can make up for graphene and GaAs in respect of acoustic-phonon emission and be used in tunable hypersonic devices such as terahertz sound sources.