The inverse and direct piezoelectric and circuit coupling are widely observed in advanced electro-mechanical systems such as piezoelectric energy harvesters.Existing strongly coupled analysis methods based on direct n...The inverse and direct piezoelectric and circuit coupling are widely observed in advanced electro-mechanical systems such as piezoelectric energy harvesters.Existing strongly coupled analysis methods based on direct numerical modeling for this phenomenon can be classified into partitioned or monolithic formulations.Each formulation has its advantages and disadvantages,and the choice depends on the characteristics of each coupled problem.This study proposes a new option:a coupled analysis strategy that combines the best features of the existing formulations,namely,the hybrid partitioned-monolithic method.The analysis of inverse piezoelectricity and the monolithic analysis of direct piezoelectric and circuit interaction are strongly coupled using a partitioned iterative hierarchical algorithm.In a typical benchmark problem of a piezoelectric energy harvester,this research compares the results from the proposed method to those from the conventional strongly coupled partitioned iterative method,discussing the accuracy,stability,and computational cost.The proposed hybrid concept is effective for coupled multi-physics problems,including various coupling conditions.展开更多
Several results on optical-axis perturbation and elimination of the mismatching error C of a monolithic triaxial ring resonator (MTRR) are reported. Based on the augmented 5×5 ray matrix method, by simultaneous...Several results on optical-axis perturbation and elimination of the mismatching error C of a monolithic triaxial ring resonator (MTRR) are reported. Based on the augmented 5×5 ray matrix method, by simultaneously considering axial displacement of a mirror and the misalignments in three planar square ring resonators of a MTRR, the rules of optical-axis perturbation are obtained. The mismatching error C of the MTRR is eliminated. The results obtained are important for cavity design, as well as in the improvement and alignment of MTRR.展开更多
基金supported by the Japan Society for the Promotion of Science,KAKENHI Grant No.23H00475.
文摘The inverse and direct piezoelectric and circuit coupling are widely observed in advanced electro-mechanical systems such as piezoelectric energy harvesters.Existing strongly coupled analysis methods based on direct numerical modeling for this phenomenon can be classified into partitioned or monolithic formulations.Each formulation has its advantages and disadvantages,and the choice depends on the characteristics of each coupled problem.This study proposes a new option:a coupled analysis strategy that combines the best features of the existing formulations,namely,the hybrid partitioned-monolithic method.The analysis of inverse piezoelectricity and the monolithic analysis of direct piezoelectric and circuit interaction are strongly coupled using a partitioned iterative hierarchical algorithm.In a typical benchmark problem of a piezoelectric energy harvester,this research compares the results from the proposed method to those from the conventional strongly coupled partitioned iterative method,discussing the accuracy,stability,and computational cost.The proposed hybrid concept is effective for coupled multi-physics problems,including various coupling conditions.
基金supported by the National Natural Science Foundation of China under Grant Nos.60608002and 60608002
文摘Several results on optical-axis perturbation and elimination of the mismatching error C of a monolithic triaxial ring resonator (MTRR) are reported. Based on the augmented 5×5 ray matrix method, by simultaneously considering axial displacement of a mirror and the misalignments in three planar square ring resonators of a MTRR, the rules of optical-axis perturbation are obtained. The mismatching error C of the MTRR is eliminated. The results obtained are important for cavity design, as well as in the improvement and alignment of MTRR.