In this article, the 2-variable general polynomials are taken as base with Peters polynomials to introduce a family of 2-variable Peters mixed type polynomials.These polynomials are framed within the context of monomi...In this article, the 2-variable general polynomials are taken as base with Peters polynomials to introduce a family of 2-variable Peters mixed type polynomials.These polynomials are framed within the context of monomiality principle and their properties are established. Certain summation formulae for these polynomials are also derived. Examples of some members belonging to this family are considered and numbers related to some mixed special polynomials are also explored.展开更多
Value distributions of the general differential monomials is discussed.The following theorem is obtained:Let f be a transcendental meromorphic function in the plane,F=f n 0 (f (i) ) n i …(f (k) ) ...Value distributions of the general differential monomials is discussed.The following theorem is obtained:Let f be a transcendental meromorphic function in the plane,F=f n 0 (f (i) ) n i …(f (k) ) n k -c,n i≥1,c≠0 be a constant then (n 0-2)T(r,f)≤(r,1F)+S(r,f) when n 0】2;T(r,f)≤7(i+1)i( i) (r,1f)+(r,1F))+S(r,f) when n 0=1;T(r,f)≤7(N(r,1f)+(r,1F))+S(r,f) when n 0=0.展开更多
In this paper, we present a necessary and suffcient condition that the perturbed monomial mapping is ergodic on a sphere S_(p-1)(1), which is in a combination with Anashin's earlier results about the perturbed mon...In this paper, we present a necessary and suffcient condition that the perturbed monomial mapping is ergodic on a sphere S_(p-1)(1), which is in a combination with Anashin's earlier results about the perturbed monomial ergodic mappings on a sphere S_(p-r)(1), r > 1, completely solve a problem posed by A. Khrennikov about the ergodicity of a perturbed monomial mapping on a sphere.展开更多
In this paper, it is proved that a monomial derivation d of k[x, y, z] has no Darboux polynomials if and only if d is a strict derivation with a trivial ring of constants, and we give the specific conditions when it h...In this paper, it is proved that a monomial derivation d of k[x, y, z] has no Darboux polynomials if and only if d is a strict derivation with a trivial ring of constants, and we give the specific conditions when it has no Darboux polynomials.展开更多
We find an explicit expression of the associated primes of monomial ideals as a colon by an element,using the unique irredundant irreducible decomposition whose irreducible components are monomial ideals.An algorithm ...We find an explicit expression of the associated primes of monomial ideals as a colon by an element,using the unique irredundant irreducible decomposition whose irreducible components are monomial ideals.An algorithm to compute is given using Macaulay2.For squarefree monomial ideals the problem is related to the combinatorics of the underlying clutter or graph.For ideals of Borel type,the monomial u takes a simpler form,and we classify when is unique.展开更多
Let R=K[x1,…,xn]be the polynomial ring in n variables over a field K and I be a matroidal ideal of R.We show that I is sequentially Cohen-Macaulay if and only if the Alexander dual Iy has linear quotients.As a conseq...Let R=K[x1,…,xn]be the polynomial ring in n variables over a field K and I be a matroidal ideal of R.We show that I is sequentially Cohen-Macaulay if and only if the Alexander dual Iy has linear quotients.As a consequence,I is sequentially Cohen-Macaulay if and only if I is shellable.展开更多
In this paper, we study the structures of monomial Hopf algebras over a field of positive characteristic. A necessary and sufficient condition for the monomial coalgebra Cd(n) to admit Hopf structures is given here, a...In this paper, we study the structures of monomial Hopf algebras over a field of positive characteristic. A necessary and sufficient condition for the monomial coalgebra Cd(n) to admit Hopf structures is given here, and if it is the case, all graded Hopf structures on Cd(n)are completely classified. Moreover, we construct a Hopf algebras filtration on Cd(n) which will help us to discuss a conjecture posed by Andruskiewitsch and Schneider. Finally combined with a theorem by Montgomery, we give the structure theorem for all monomial Hopf algebras.展开更多
This paper studies the minimal monomial basis of the n-variable Birkhoff interpolation problem. First, the authors give a fast B-Lex algorithm which has an explicit geometric interpretation to compute the minimal mono...This paper studies the minimal monomial basis of the n-variable Birkhoff interpolation problem. First, the authors give a fast B-Lex algorithm which has an explicit geometric interpretation to compute the minimal monomial interpolation basis under lexieographie order and the algorithm is in fact a generalization of lex game algorithm. In practice, people usually desire the lowest degree interpolation polynomial, so the interpolation problems need to be solved under, for example, graded monomial order instead of lexicographie order. However, there barely exist fast algorithms for the non- lexicographic order problem. Hence, the authors in addition provide a criterion to determine whether an n-variable Birkhoff interpolation problem has unique minimal monomial basis, which means it owns the same minimal monomial basis w.r.t, arbitrary monomial order. Thus, for problems in this case, the authors can easily get the minimal monomial basis with little computation cost w.r.t, arbitrary monomial order by using our fast B-Lex algorithm.展开更多
Let G be a finite group and p be a fixed prime. A p-Brauer character of G is said to be monomial if it is induced from a linear p-Brauer character of some subgroup(not necessarily proper) of G. Denote by IBr_m(G) the ...Let G be a finite group and p be a fixed prime. A p-Brauer character of G is said to be monomial if it is induced from a linear p-Brauer character of some subgroup(not necessarily proper) of G. Denote by IBr_m(G) the set of irreducible monomial p-Brauer′characters of G. Let H = G′O^p′(G) be the smallest normal subgroup such that G/H is an abelian p′-group. Suppose that g ∈ G is a p-regular element and the order of gH in the factor group G/H does not divide |IBr_m(G)|. Then there exists ? ∈ IBr_m(G) such that ?(g) = 0.展开更多
Column closed pattern subgroups U of the finite upper unitriangular groups U_n(q) are defined as sets of matrices in U_n(q) having zeros in a prescribed set of columns besides the diagonal ones. We explain Jedlitschky...Column closed pattern subgroups U of the finite upper unitriangular groups U_n(q) are defined as sets of matrices in U_n(q) having zeros in a prescribed set of columns besides the diagonal ones. We explain Jedlitschky's construction of monomial linearisation in his thesis and apply this to CU yielding a generalisation of Yan's coadjoint cluster representations. Then we give a complete classification of the resulting supercharacters,by describing the resulting orbits and determining the Hom-spaces between orbit modules.展开更多
The aim of this paper is to show Cauchy-Kowalevski and Holmgren type theorems with an infinite number of variables. We adopt von Koch and Hilbert’s definition of analyticity of functions as monomial expansions. Our C...The aim of this paper is to show Cauchy-Kowalevski and Holmgren type theorems with an infinite number of variables. We adopt von Koch and Hilbert’s definition of analyticity of functions as monomial expansions. Our Cauchy-Kowalevski type theorem is derived by modifying the classical method of majorants.Based on this result, by employing some tools from abstract Wiener spaces, we establish our Holmgren type theorem.展开更多
基金UGC-BSR Reaserch Start-Up-Grant (Office Memo No. 30-90/2015(BSR)) awarded to the author by the University Grants Commission (UGC), Government of India, New Delhi
文摘In this article, the 2-variable general polynomials are taken as base with Peters polynomials to introduce a family of 2-variable Peters mixed type polynomials.These polynomials are framed within the context of monomiality principle and their properties are established. Certain summation formulae for these polynomials are also derived. Examples of some members belonging to this family are considered and numbers related to some mixed special polynomials are also explored.
文摘Value distributions of the general differential monomials is discussed.The following theorem is obtained:Let f be a transcendental meromorphic function in the plane,F=f n 0 (f (i) ) n i …(f (k) ) n k -c,n i≥1,c≠0 be a constant then (n 0-2)T(r,f)≤(r,1F)+S(r,f) when n 0】2;T(r,f)≤7(i+1)i( i) (r,1f)+(r,1F))+S(r,f) when n 0=1;T(r,f)≤7(N(r,1f)+(r,1F))+S(r,f) when n 0=0.
基金Foundation item: Supported by the National Natural Science Foundation of China(11471333) Supported by the Basic and Advanced Technology Research Project of Henan Province(142300410449)
文摘All monomials with t-value ≤ 6 in Canonical basis of quantized enveloping algebra of type B3 are determined in this paper.
基金Supported by the National Natural Science Foundation of China(10771075,11371379)
文摘In this paper, we present a necessary and suffcient condition that the perturbed monomial mapping is ergodic on a sphere S_(p-1)(1), which is in a combination with Anashin's earlier results about the perturbed monomial ergodic mappings on a sphere S_(p-r)(1), r > 1, completely solve a problem posed by A. Khrennikov about the ergodicity of a perturbed monomial mapping on a sphere.
基金The NSF(11526104)of Chinathe Youth Research Funds(LDGY2015001)from Liaoning University
文摘In this paper, it is proved that a monomial derivation d of k[x, y, z] has no Darboux polynomials if and only if d is a strict derivation with a trivial ring of constants, and we give the specific conditions when it has no Darboux polynomials.
基金Supported by the National Natural Science Foundation of China(Grant No.11301144,11771122,11801141).
文摘We give a complete description of the Batalin-Vilkovisky algebra structure on Hochschild cohomology of the self-injective quadratic monomial algebras.
基金Supported by the MATRICS research grant MTR/2018/000420sponsored by the SERB Government of India.
文摘We find an explicit expression of the associated primes of monomial ideals as a colon by an element,using the unique irredundant irreducible decomposition whose irreducible components are monomial ideals.An algorithm to compute is given using Macaulay2.For squarefree monomial ideals the problem is related to the combinatorics of the underlying clutter or graph.For ideals of Borel type,the monomial u takes a simpler form,and we classify when is unique.
文摘Let R=K[x1,…,xn]be the polynomial ring in n variables over a field K and I be a matroidal ideal of R.We show that I is sequentially Cohen-Macaulay if and only if the Alexander dual Iy has linear quotients.As a consequence,I is sequentially Cohen-Macaulay if and only if I is shellable.
基金supported by the Program for New Century Excellent Talents in University(Grant No.04-0522)the second author was supported by the National Natural Science Foundation of China(Grant Nos.10271113&10501041)the Doctoral Foundation of the Chinese Education Ministry.
文摘In this paper, we study the structures of monomial Hopf algebras over a field of positive characteristic. A necessary and sufficient condition for the monomial coalgebra Cd(n) to admit Hopf structures is given here, and if it is the case, all graded Hopf structures on Cd(n)are completely classified. Moreover, we construct a Hopf algebras filtration on Cd(n) which will help us to discuss a conjecture posed by Andruskiewitsch and Schneider. Finally combined with a theorem by Montgomery, we give the structure theorem for all monomial Hopf algebras.
基金supported by the National Natural Science Foundation of China under Grant No.11271156Science and Technology Development Plan of Jilin Province under Grant No.20130101179JCPublic Computing Platform in Jilin Province
文摘This paper studies the minimal monomial basis of the n-variable Birkhoff interpolation problem. First, the authors give a fast B-Lex algorithm which has an explicit geometric interpretation to compute the minimal monomial interpolation basis under lexieographie order and the algorithm is in fact a generalization of lex game algorithm. In practice, people usually desire the lowest degree interpolation polynomial, so the interpolation problems need to be solved under, for example, graded monomial order instead of lexicographie order. However, there barely exist fast algorithms for the non- lexicographic order problem. Hence, the authors in addition provide a criterion to determine whether an n-variable Birkhoff interpolation problem has unique minimal monomial basis, which means it owns the same minimal monomial basis w.r.t, arbitrary monomial order. Thus, for problems in this case, the authors can easily get the minimal monomial basis with little computation cost w.r.t, arbitrary monomial order by using our fast B-Lex algorithm.
基金supported by the National Natural Science Foundation of China(Nos.11571129,11771356)the Natural Key Fund of Education Department of Henan Province(No.17A110004)the Natural Funds of Henan Province(Nos.182102410049,162300410066)
文摘Let G be a finite group and p be a fixed prime. A p-Brauer character of G is said to be monomial if it is induced from a linear p-Brauer character of some subgroup(not necessarily proper) of G. Denote by IBr_m(G) the set of irreducible monomial p-Brauer′characters of G. Let H = G′O^p′(G) be the smallest normal subgroup such that G/H is an abelian p′-group. Suppose that g ∈ G is a p-regular element and the order of gH in the factor group G/H does not divide |IBr_m(G)|. Then there exists ? ∈ IBr_m(G) such that ?(g) = 0.
基金supported by National Natural Science Foundation of China(Grant No.11601338)the German Research Foundation,Priority Programme Deutsche ForschungsgemeinschaftSchwerpunktsprogramm Darstellungstheorie 1388 in Representation Theory(Grant No.99028426)
文摘Column closed pattern subgroups U of the finite upper unitriangular groups U_n(q) are defined as sets of matrices in U_n(q) having zeros in a prescribed set of columns besides the diagonal ones. We explain Jedlitschky's construction of monomial linearisation in his thesis and apply this to CU yielding a generalisation of Yan's coadjoint cluster representations. Then we give a complete classification of the resulting supercharacters,by describing the resulting orbits and determining the Hom-spaces between orbit modules.
基金supported by National Natural Science Foundation of China(Grant No.11501384)supported by National Natural Science Foundation of China(Grant No.11221101)+1 种基金the NSFC-CNRS Joint Research Project(Grant No.11711530142)the Program for Changjiang Scholars and Innovative Research Team in University from the Chinese Education Ministry(Grant No.IRT 16R53)
文摘The aim of this paper is to show Cauchy-Kowalevski and Holmgren type theorems with an infinite number of variables. We adopt von Koch and Hilbert’s definition of analyticity of functions as monomial expansions. Our Cauchy-Kowalevski type theorem is derived by modifying the classical method of majorants.Based on this result, by employing some tools from abstract Wiener spaces, we establish our Holmgren type theorem.