期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
Metformin promotes angiogenesis and functional recovery in aged mice after spinal cord injury by adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway 被引量:2
1
作者 Jin-Yun Zhao Xiao-Long Sheng +7 位作者 Cheng-Jun Li Tian Qin Run-Dong He Guo-Yu Dai Yong Cao Hong-Bin Lu Chun-Yue Duan Jian-Zhong Hu 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第7期1553-1562,共10页
Treatment with metformin can lead to the recovery of pleiotropic biological activities after spinal cord injury.However,its effect on spinal cord injury in aged mice remains unclear.Considering the essential role of a... Treatment with metformin can lead to the recovery of pleiotropic biological activities after spinal cord injury.However,its effect on spinal cord injury in aged mice remains unclear.Considering the essential role of angiogenesis during the regeneration process,we hypothesized that metformin activates the adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway in endothelial cells,thereby promoting microvascular regeneration in aged mice after spinal cord injury.In this study,we established young and aged mouse models of contusive spinal cord injury using a modified Allen method.We found that aging hindered the recovery of neurological function and the formation of blood vessels in the spinal cord.Treatment with metformin promoted spinal cord microvascular endothelial cell migration and blood vessel formation in vitro.Furthermore,intraperitoneal injection of metformin in an in vivo model promoted endothelial cell proliferation and increased the density of new blood vessels in the spinal cord,thereby improving neurological function.The role of metformin was reversed by compound C,an adenosine monophosphate-activated protein kinase inhibitor,both in vivo and in vitro,suggesting that the adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway likely regulates metformin-mediated angiogenesis after spinal cord injury.These findings suggest that metformin promotes vascular regeneration in the injured spinal cord by activating the adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway,thereby improving the neurological function of aged mice after spinal cord injury. 展开更多
关键词 adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway ANGIOGENESIS aged mice compound C METFORMIN spinal cord injury
下载PDF
Electroacupuncture preconditioning attenuates ischemic brain injury by activation of the adenosine monophosphate-activated protein kinase signaling pathway 被引量:9
2
作者 Qiang-qiang Ran Huai-long Chen +3 位作者 Yan-li Liu Hai-xia Yu Fei Shi Ming-shan Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第7期1069-1075,共7页
Electroacupuncture has therapeutic effects on ischemic brain injury, but its mechanism is still poorly understood. In this study, mice were stimulated by electroacupuncture at the Baihui(GV20) acupoint for 30 minute... Electroacupuncture has therapeutic effects on ischemic brain injury, but its mechanism is still poorly understood. In this study, mice were stimulated by electroacupuncture at the Baihui(GV20) acupoint for 30 minutes at 1 m A and 2/15 Hz for 5 consecutive days. A cerebral ischemia model was established by ligating the bilateral common carotid artery for 15 minutes. At 72 hours after injury, neuronal injury in the mouse hippocampus had lessened, and the number of terminal deoxynucleotide transferase-mediated d UTP nick-end labeling-positive cells reduced after electroacupuncture treatment. Moreover, expression of adenosine monophosphate-activated protein kinase α(AMPKα) and phosphorylated AMPKα was up-regulated. Intraperitoneal injection of the AMPK antagonist, compound C, suppressed this phenomenon. Our findings suggest that electroacupuncture preconditioning alleviates ischemic brain injury via AMPK activation. 展开更多
关键词 nerve regeneration electroacupuncture cerebral ischemia neuroprotection adenosine monophosphate-activated protein kinase α compound C neurons apoptosis NSFC grant neural regeneration
下载PDF
AB015.Metabolic stress in glaucoma engages early activation of the energy biosensor adenosine monophosphate-activated protein kinase leading to neuronal dysfunction
3
作者 Nicolas Belforte Jorge L.Cueva Vargas Adriana Di Polo 《Annals of Eye Science》 2018年第1期421-421,共1页
Background:Metabolic stress has been proposed to contribute to neuronal damage in glaucoma,but the mechanism driving this response is not understood.The adenosine monophosphate-activated protein kinase(AMPK)is a maste... Background:Metabolic stress has been proposed to contribute to neuronal damage in glaucoma,but the mechanism driving this response is not understood.The adenosine monophosphate-activated protein kinase(AMPK)is a master regulator of energy homeostasis that becomes active at the onset of energy stress.AMPK is a potent inhibitor of the mammalian target of rapamycin complex 1(mTORC1),which we showed is essential for the maintenance of retinal ganglion cell(RGC)dendrites,synapses,and survival.Here,we tested the hypothesis that AMPK is an early mediator of metabolic stress in glaucoma.Methods:Unilateral elevation of intraocular pressure was induced by injection of magnetic microbeads into the anterior chamber of mice expressing yellow fluorescent protein in RGCs.Inhibition of AMPK was achieved by administration of siRNA or compound C.RGC dendritic trees were 3D-reconstructed and analyzed with Imaris(Bitplane),and survival was assessed by counting Brn3a or RBPMS-labeled soma and axons in the optic nerve.RGC function was examined by quantification of anterograde axonal transport after intraocular administration of cholera toxinβ-subunit.Retinas from glaucoma patients were analyzed for expression of active AMPK.Results:Ocular hypertension triggered rapid upregulation of AMPK activity in RGCs concomitant with loss of mTORC1 function.AMPK inhibition with compound C or siRNA effectively restored mTORC1 activity and promoted an increase in total dendritic length,surface and complexity relative to control retinas.Attenuation of AMPK activity led to robust RGC soma and axon survival.For example,95%of RGCs(2,983±258 RGCs/mm2,mean±S.E.M.)survived with compound C compared to 77%in vehicle-treated eyes(2,430±233 RGCs/mm2)(ANOVA,P<0.001)at three weeks after glaucoma induction(n=8-10/group).Importantly,blockade of AMPK activity effectively restored anterograde axonal transport.Lastly,RGC-specific upregulation of AMPK activity was detected in human glaucomatous retinas relative to age-matched controls(n=10/group).Conclusions:Metabolic stress in glaucoma involves AMPK activation and mTORC1 inhibition promoting early RGC dendritic pathology,dysfunction and neurodegeneration. 展开更多
关键词 Metabolic stress retinal ganglion cell(RGC) adenosine monophosphate-activated protein kinase(AMPK) GLAUCOMA
下载PDF
Beneficial effects of metformin on primary cardiomyocytes via activation of adenosine monophosphate-activated protein kinase 被引量:9
4
作者 WANG Xiao-fang ZHANG Jin-ying LI Ling ZHAO Xiao-yan 《Chinese Medical Journal》 SCIE CAS CSCD 2011年第12期1876-1884,共9页
Background Metformin has become a cornerstone in the treatment of patients with type-2 diabetes. Accumulated evidence suggests that metformin supports direct cardiovascular effects. The present study aimed to investig... Background Metformin has become a cornerstone in the treatment of patients with type-2 diabetes. Accumulated evidence suggests that metformin supports direct cardiovascular effects. The present study aimed to investigate if metformin has beneficial effects on primary cardiomyocytes damaged by H2O2, and reveal the potential mechanism of action of metformin. Methods Cardiomyocytes were incubated in the presence of 100μmol/L H2O2 for 12 hours. Cardiomyocytes were pretreated with metformin at different concentrations and time and with aminoimidazole carboxamide ribonucleotide (AICAR) (500μmol/L), an adenosine monophophate (AMP)-activated protein kinase (AMPK) agonist for 60 minutes before the addition of H2O2. Other cells were preincubated with compound C (an AMPK antagonist, 20μmol/L) for 4 hours. The viability and apoptosis of cells were analyzed. AMPK, endothelial nitric oxide synthase (eNOS), and transforming growth factor (TGF)-β1 were analyzed using immunblotting. Results Metformin had antagonistic effects on the influences of H2O2 on cell viability and attenuated oxidative stress-induced apoptosis. Metformin also increased phosphorylation of AMPK and eNOS, and reduced the expression of TGF-β1, basic fibroblast growth factor (bFGF), and tumor necrosis factor (TNF)-α. Conclusions Metformin has beneficial effects on cardiomyocytes, and this effect involves activation of the AMPK-eNOS pathway. Metformin may be potentially beneficial for the treatment of heart disease. 展开更多
关键词 adenosine monophosphate-activated protein kinase cardiomyocyte endothelial nitric oxide synthase METFORMIN transforming growth factor
原文传递
Metformin inhibits nuclear factor-κB activation and inflammatory cytokines expression induced by high glucose via adenosine monophosphate-activated protein kinase activation in rat glomerular mesangial cells in vitro 被引量:8
5
作者 Gu Junfei Ye Shandong Wang Shan Sun Wenjia Hu Yuanyuan 《Chinese Medical Journal》 SCIE CAS CSCD 2014年第9期1755-1760,共6页
Background The renoprotective mechanisms of adenosine monophosphate (AMP)-activated protein kinase (AMPK) agonist-metformin have not been stated clearly.We hypothesized that metformin may ameliorate inflammation v... Background The renoprotective mechanisms of adenosine monophosphate (AMP)-activated protein kinase (AMPK) agonist-metformin have not been stated clearly.We hypothesized that metformin may ameliorate inflammation via AMPK interaction with critical inflammatory cytokines The aim of this study was to observe the effects of metformin on expression of nuclear factor-κB (NF-κB),monocyte chemoattractant protein-1 (MCP-1),intercellular adhesion molecule-1 (ICAM-1) and transforming growth factor-beta 1 (TGF-β1) induced by high glucose (HG) in cultured rat glomerular mesangial cells (MCs).Methods MCs were cultured in the medium with normal concentration glucose (group NG,5.6 mmol/L),high concentration glucose (group HG,25 mmol/L) and different concentrations of metformin (group M1,M2,M3).After 48-hour exposure,the supernatants and MCs were collected.The expression of NF-κB,MCP-1,ICAM-1,and TGF-β1 mRNA was analyzed by real time polymerase chain reaction.Westem blotting was used to detect the expression of AMPK,phospho-Thr-172 AMPK (p-AMPK),NF-κB p65,MCP-1,ICAM-1,and TGF-β1 protein.Results After stimulated by HG,the expression of NF-κB,MCP-1,ICAM-1,TGF-β1 mRNA and protein of MCs in group HG increased significantly compared with group NG (P <0.05).Both genes and protein expression of NF-κB,MCP-1,ICAM-1,TGF-β1 of MCs induced by high glucose were markedly reduced after metformin treatment in a dose-dependent manner (P <0.05).The expression of p-AMPK increased with the rising of metformin concentration,presenting the opposite trend,while the level of total-AMPK protein was unchanged with exposure to HG or metformin.Conlusion Metformin can suppress the expression of NF-κB,MCP-1,ICAM-1 and TGF-β1 of glomerular MCs induced by high glucose via AMPK activation,which may partlv contribute to its reno-protection. 展开更多
关键词 METFORMIN adenosine monophosphate-activated protein kinase nuclear factor-κB monocyte chemoattractant protein-1 intercellular adhesion molecule-1 transforming growth factor-beta 1 glomerular mesangial cell
原文传递
Adenosine Monophosphate-Activated Protein Kinase,Oxidative Stress,and Diabetic Endothelial Dysfunction
6
作者 Ming-Hui Zou Shengnan Wu 《Cardiology Discovery》 2021年第1期44-57,共14页
Endothelial dysfunction characterized by impaired endothelium-dependent vaso-relaxation is one of the earliest detectable pathological events in smoking,diabetes,and many cardiovascular diseases including hypertension... Endothelial dysfunction characterized by impaired endothelium-dependent vaso-relaxation is one of the earliest detectable pathological events in smoking,diabetes,and many cardiovascular diseases including hypertension,atherosclerosis.Overwhelming data from human and animals demonstrate that the endothelial dysfunction associated with diabetes is due to the local formation of oxidants and free radicals.However,the mechanisms by which diabetes instigates oxidative stress,and those by which oxidative stress perpetuates endothelial dysfunction are the subjects of intensive research in the last 3 decades.The studies from us and others have demonstrated that adenosine monophosphate-activated protein kinase(AMPK),a well-characterized energy sensor and modulator,serves as a highly efficient sensor as AMPK can be activated by very low levels of reactive oxygen species(ROS)and reactive nitrogen species(RNS)generated by physiological,pharmacological,and pathologic stimuli(redox sensor).Interestingly,oxidants-activated AMPK feedback lowers the levels of ROS by either suppressing ROS/RNS from reduced nicotinamide adenine dinucleotide phosphate(NADPH)oxidase and mitochondria or by increasing the levels of antioxidant enzymes(redox modulator).Further,our studies demonstrate that AMPK’s functions as a redox sensor and modulator are vital to maintain endothelial cell function under physiological conditions.Finally,we discover that under chronic oxidative stress or large influx of ROS,AMPK is particularly susceptible to inhibition by ROS.We conclude that oxidative inactivation of AMPK in diabetes perpetuates oxidative stress and accelerates atherosclerosis in diabetes. 展开更多
关键词 Adenosine monophosphate-activated protein kinase ATHEROSCLEROSIS Endothelial cell Nitric oxide Oxidative stress
原文传递
Fusobacterium nucleatum-induced imbalance in microbiome-derived butyric acid levels promotes the occurrence and development of colorectal cancer
7
作者 Qi-Long Wu Xiao-Ting Fang +5 位作者 Xin-Xin Wan Qing-Yong Ding Yan-Jun Zhang Ling Ji Yong-Liang Lou Xiang Li 《World Journal of Gastroenterology》 SCIE CAS 2024年第14期2018-2037,共20页
BACKGROUND Colorectal cancer(CRC)ranks among the most prevalent malignant tumors globally.Recent reports suggest that Fusobacterium nucleatum(F.nucleatum)contributes to the initiation,progression,and prognosis of CRC.... BACKGROUND Colorectal cancer(CRC)ranks among the most prevalent malignant tumors globally.Recent reports suggest that Fusobacterium nucleatum(F.nucleatum)contributes to the initiation,progression,and prognosis of CRC.Butyrate,a short-chain fatty acid derived from the bacterial fermentation of soluble dietary fiber,is known to inhibit various cancers.This study is designed to explore whether F.nucleatum influences the onset and progression of CRC by impacting the intestinal metabolite butyric acid.AIM To investigate the mechanism by which F.nucleatum affects CRC occurrence and development.METHODS Alterations in the gut microbiota of BALB/c mice were observed following the oral administration of F.nucleatum.Additionally,DLD-1 and HCT116 cell lines were exposed to sodium butyrate(NaB)and F.nucleatum in vitro to examine the effects on proliferative proteins and mitochondrial function.RESULTS Our research indicates that the prevalence of F.nucleatum in fecal samples from CRC patients is significantly greater than in healthy counterparts,while the prevalence of butyrate-producing bacteria is notably lower.In mice colonized with F.nucleatum,the population of butyrate-producing bacteria decreased,resulting in altered levels of butyric acid,a key intestinal metabolite of butyrate.Exposure to NaB can impair mitochondrial morphology and diminish mitochondrial membrane potential in DLD-1 and HCT116 CRC cells.Consequently,this leads to modulated production of adenosine triphosphate and reactive oxygen species,thereby inhibiting cancer cell prolif-eration.Additionally,NaB triggers the adenosine monophosphate-activated protein kinase(AMPK)signaling pathway,blocks the cell cycle in HCT116 and DLD-1 cells,and curtails the proliferation of CRC cells.The combined presence of F.nucleatum and NaB attenuated the effects of the latter.By employing small interfering RNA to suppress AMPK,it was demonstrated that AMPK is essential for NaB’s inhibition of CRC cell proliferation.CONCLUSION F.nucleatum can promote cancer progression through its inhibitory effect on butyric acid,via the AMPK signaling pathway. 展开更多
关键词 Colorectal cancer Fusobacterium nucleatum Butyric acid Gut microbiota Adenosine monophosphate-activated protein kinase signal pathway
下载PDF
Adaptive and regulatory mechanisms in aged rats with postoperative cognitive dysfunction 被引量:17
8
作者 Yanlin Bi Shuyun Liu +2 位作者 Xinjuan Yu Mingshan Wang Yuelan Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第5期534-539,共6页
Inflammation may play a role in postoperative cognitive dysfunction. 5' Adenosine monophos- phate-activated protein kinase, nuclear factor-kappa B, interleukin-1β, and tumor necrosis factor-a are involved in inflamm... Inflammation may play a role in postoperative cognitive dysfunction. 5' Adenosine monophos- phate-activated protein kinase, nuclear factor-kappa B, interleukin-1β, and tumor necrosis factor-a are involved in inflammation. Therefore, these inflammatory mediators may be involved in postoperative cognitive dysfunction. Western immunoblot analysis revealed 5' adenosine mo- nophosphate-activated protein kinase and nuclear factor-kappa B in the hippocampus of aged rats were increased 1-7 days after splenectomy. Moreover, interleukin-1β and tumor necrosis fac- tor-α were upregulated and gradually decreased. Therefore, these inflammatory mediators may participate in the splenectomy model of postoperative cognitive dysfunction in aged rats. 展开更多
关键词 nerve regeneration postoperative cognitive dysfunction SPLENECTOMY BRAIN AGING 5'ad- enosine monophosphate-activated protein kinase nuclear factor-kappa B tumor necrosis factor-α interleukin- neural regeneration
下载PDF
Metformin attenuates motility,contraction,and fibrogenic response of hepatic stellate cells in vivo and in vitro by activating AMP-activated protein kinase 被引量:11
9
作者 Zhen Li Qian Ding +4 位作者 Li-Ping Ling Ying Wu Dong-Xiao Meng Xiao Li Chun-Qing Zhang 《World Journal of Gastroenterology》 SCIE CAS 2018年第7期819-832,共14页
AIM To investigate the effect of metformin on activated hepatic stellate cells(HSCs) and the possible signaling pathways involved. METHODS A fibrotic mouse model was generated by intraperitoneal injection of carbon te... AIM To investigate the effect of metformin on activated hepatic stellate cells(HSCs) and the possible signaling pathways involved. METHODS A fibrotic mouse model was generated by intraperitoneal injection of carbon tetrachloride(CCl_4) and subsequent treatment with or without metformin. The level of fibrosis was detected by hematoxylin-eosin staining, Sirius Red staining, and immunohistochemistry. The HSC cell line LX-2 was used for in vitro studies. The effect of metformin on cell proliferation(CCK8 assay),motility(scratch test and Transwell assay), contraction(collagen gel contraction assay), extracellular matrix(ECM) secretion(Western blot), and angiogenesis(ELISA and tube formation assay) was investigated. We also analyzed the possible signaling pathways involved by Western blot analysis.RESULTS Mice developed marked liver fibrosis after intraperitoneal injection with CCl_4 for 6 wk. Metformin decreased the activation of HSCs, reduced the deposition of ECM, and inhibited angiogenesis in CCl_4-treated mice. Platelet-derived growth factor(PDGF) promoted the fibrogenic response of HSCs in vitro, while metformin inhibited the activation, proliferation, migration, and contraction of HSCs, and reduced the secretion of ECM. Metformin decreased the expression of vascular endothelial growth factor(VEGF) in HSCs through inhibition of hypoxia inducible factor(HIF)-1α in both PDGF-BB treatment and hypoxic conditions, and it down-regulated VEGF secretion by HSCs and inhibited HSC-based angiogenesis in hypoxic conditions in vitro. The inhibitory effects of metformin on activated HSCs were mediated by inhibiting the Akt/mammalian target of rapamycin(m TOR) and extracellular signal-regulated kinase(ERK) pathways via the activation of adenosine monophosphate-activated protein kinase(AMPK).CONCLUSION Metformin attenuates the fibrogenic response of HSCs in vivo and in vitro, and may therefore be useful for the treatment of chronic liver diseases. 展开更多
关键词 hepatic stellate cell INTRAHEPATIC vascular resistance angiogenesis CONTRACTION liver fibrosis ADENOSINE monophosphate-activated protein kinase
下载PDF
Sevoflurane pretreatment inhibits the myocardial apoptosis caused by hypoxia reoxygenation through AMPK pathway:An experimental study 被引量:5
10
作者 Zhao-Ying Liu Shun-Peng Hu +3 位作者 Qing-Rong Ji Hai-Bo Yang Dong-Hao Zhou Fang-Fang Wu 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2017年第2期141-145,共5页
Objective:To study whether sevoflurane pretreatment inhibits the myocardial apoptosis caused by hypoxia reoxygenation through AMPK pathway.Methods:H9c2 myocardial cell lines were cultured and divided into control grou... Objective:To study whether sevoflurane pretreatment inhibits the myocardial apoptosis caused by hypoxia reoxygenation through AMPK pathway.Methods:H9c2 myocardial cell lines were cultured and divided into control group(C group),hypoxia reoxygenation group(H/R group),sevoflurane pretreatment+hypoxia reoxygenation group(SP group) and sevoflurane combined with Compound C pretreatment+hypoxia reoxygenation group(ComC group),and the cell proliferation activity and apoptosis rate,myocardial enzyme levels in culture medium as well as the expression of apoptosis genes and p-AMPK in cells were determined.Results:p-AMPK expression in cells of H/R group was significantly lower than that of C group,SP group was significantly higher than that of H/R group;cell proliferation activity value and Bcl-2 expression in cells of H/R group were significantly lower than those of C group,SP group were significantly higher than those of H/R group,Com C group were significantly lower than those of SP group;apoptosis rate,LDH,CK and AST levels as well as the Bax and Caspase-3 expression in cells of H/R group were significantly higher than those of C group,SP group were significantly lower than those of H/R group,ComC group were significantly higher than those of SP group.Conclusions:Sevoflurane pretreatment can activate AMPK signaling pathway to inhibit the myocardial apoptosis caused by hypoxia reoxygenation. 展开更多
关键词 Myocardial hypoxia reoxygenation SEVOFLURANE Apoptosis ADENOSINE monophosphate-activated Protein kinase
下载PDF
AMPK-associated signaling to bridge the gap between fuel metabolism and hepatocyte viability 被引量:4
11
作者 Yoon Mee Yang Chang Yeob Han +1 位作者 Yoon Jun Kim Sang Geon Kim 《World Journal of Gastroenterology》 SCIE CAS CSCD 2010年第30期3731-3742,共12页
The adenosine monophosphate-activated protein kinase (AMPK) and p70 ribosomal S6 kinase-1 pathway may serve as a key signaling flow that regulates energy metabolism; thus, this pathway becomes an attractive target for... The adenosine monophosphate-activated protein kinase (AMPK) and p70 ribosomal S6 kinase-1 pathway may serve as a key signaling flow that regulates energy metabolism; thus, this pathway becomes an attractive target for the treatment of liver diseases that result from metabolic derangements. In addition, AMPK emerges as a kinase that controls the redox-state and mitochondrial function, whose activity may be modulated by antioxidants. A close link exists between fuel metabolism and mitochondrial biogenesis. The relationship between fuel metabolism and cell survival strongly implies the existence of a shared signaling network, by which hepatocytes respond to challenges of external stimuli. The AMPK pathway may belong to this network. A series of drugs and therapeutic candidates enable hepatocytes to protect mitochondria from radical stress and increase cell viability, which may be associated with the activation of AMPK, liver kinase B1, and other molecules or components. Consequently, the components downstream of AMPK may contribute to stabilizing mitochondrial membrane potential for hepatocyte survival. In this review, we discuss the role of the AMPK pathway in hepatic energy metabolism and hepatocyte viability. This information may help identify ways to prevent and/or treat hepatic diseases caused by the metabolic syndrome. Moreover, clinical drugs and experimental therapeutic candidates that directly or indirectly modulate the AMPK pathway in distinct manners are discussed here with particular emphasis on their effects on fuel metabolism and mitochondrial function. 展开更多
关键词 Adenosine monophosphate-activated protein KINASE Cell survival Energy METABOLISM Fatty liver Insulin resistance GLYCOGEN synthase KINASE P70 RIBOSOMAL S6 kinase-1
下载PDF
Gypenoside ameliorates insulin resistance and hyperglycemia via the AMPK-mediated signaling pathways in the liver of type 2 diabetes mellitus mice 被引量:1
12
作者 Mengxue Song Dehong Tan +2 位作者 Bin Li Yanqun Wang Lin Shi 《Food Science and Human Wellness》 SCIE 2022年第5期1347-1354,共8页
Gynostemma pentaphyllum,also called"Southern Ginseng"in China,is a traditional Asian folk medicinal plant.Gypenosides(Gps)are the biologically active constituents of G.pentaphyllum,which have been reported w... Gynostemma pentaphyllum,also called"Southern Ginseng"in China,is a traditional Asian folk medicinal plant.Gypenosides(Gps)are the biologically active constituents of G.pentaphyllum,which have been reported with hypoglycemic activity.However,the underlying mechanisms are unclear.The effects of two Gps(Gp-Ⅰand Gp-Ⅱ)on type 2 diabetic mellitus(T2DM)mice,induced by high-fat and high-sugar diet and streptozotocin,were evaluated to explore the mechanism of their hypoglycemic actions.Gps reduced fasting blood glucose and serum lipids,as well as significantly improved T2DM mice glucose tolerance and insulin resistance(IR).After Gps treatment,the severity of liver injury was reduced and liver glycogen content increased.In addition,Gps promoted the phosphorylation of adenosine monophosphate-activated protein kinase(AMPK),and downregulated the key proteins phosphoenolpyruvate carboxy kinase and glucose-6 phosphatase,in the AMPK signaling pathway.Thus,our study suggests that Gps mediate hepatic gluconeogenesis and improve IR via activating AMPK signaling pathway in T2DM mice. 展开更多
关键词 GYPENOSIDES Gynostemma pentaphyllum Diabetes Insulin resistance GLUCONEOGENESIS Adenosine monophosphate-activated protein kinase(AMPK)
下载PDF
Too hard to die:Exercise training mediates specific and immediate SARS-CoV-2 protection
13
作者 Konstantinos I Papadopoulos Warachaya Sutheesophon Tar-Choon Aw 《World Journal of Virology》 2022年第2期98-103,共6页
Several mechanisms may explain how exercise training mechanistically confers protection against coronavirus disease 2019(COVID-19).Here we propose two new perspectives through which cardiorespiratory fitness may prote... Several mechanisms may explain how exercise training mechanistically confers protection against coronavirus disease 2019(COVID-19).Here we propose two new perspectives through which cardiorespiratory fitness may protect against severe acute respiratory syndrome coronavirus-2(SARS-CoV-2).Physical exercise-activated adenosine monophosphate(AMP)-activated protein kinase(AMPK)signaling induces endothelial nitric oxide(NO)synthase(eNOS),increases NO bio-availability,and inhibits palmitoylation,leading to specific and immediate SARS-CoV-2 protection.AMPK signaling also induces angiotensin 1-7 release and enhances eNOS activation thus further mediating cardio-and renoprotection.Irisin,a myokine released from skeletal muscles during aerobic exercise,also participates in the AMPK/Akt-eNOS/NO pathway,protects mitochondrial functions in endothelial cells,and antagonizes renin angiotensin system proinflammatory action leading to reductions in genes associated with severe COVID-19 outcomes.Collectively,all the above findings point to the fact that increased AMPK and irisin activity through exercise training greatly benefits molecular processes that mediate specific,immediate,and delayed SARS-CoV-2 protection.Maintaining regular physical activity levels is a safe and affordable lifestyle strategy against the current and future pandemics and may also mitigate against obesity and cardiometabolic disease syndemics.Move more because a moving target is harder to kill. 展开更多
关键词 Adenosine monophosphate-activated protein kinase Irisin Physical exercise Nitric oxide Endothelial nitric oxide synthase Severe acute respiratory syndrome coronavirus-2
下载PDF
Targeted metabolomics reveals the aberrant energy status in diabetic peripheral neuropathy and the neuroprotective mechanism of traditional Chinese medicine JinMaiTong
14
作者 Bingjia Zhao Qian Zhang +3 位作者 Yiqian He Weifang Cao Wei Song Xiaochun Liang 《Journal of Pharmaceutical Analysis》 SCIE CAS 2024年第2期225-243,共19页
Diabetic peripheral neuropathy (DPN) is a common and devastating complication of diabetes, for which effective therapies are currently lacking. Disturbed energy status plays a crucial role in DPN pathogenesis. However... Diabetic peripheral neuropathy (DPN) is a common and devastating complication of diabetes, for which effective therapies are currently lacking. Disturbed energy status plays a crucial role in DPN pathogenesis. However, the integrated profile of energy metabolism, especially the central carbohydrate metabolism, remains unclear in DPN. Here, we developed a metabolomics approach by targeting 56 metabolites using high-performance ion chromatography-tandem mass spectrometry (HPIC-MS/MS) to illustrate the integrative characteristics of central carbohydrate metabolism in patients with DPN and streptozotocin-induced DPN rats. Furthermore, JinMaiTong (JMT), a traditional Chinese medicine (TCM) formula, was found to be effective for DPN, improving the peripheral neurological function and alleviating the neuropathology of DPN rats even after demyelination and axonal degeneration. JMT ameliorated DPN by regulating the aberrant energy balance and mitochondrial functions, including excessive glycolysis restoration, tricarboxylic acid cycle improvement, and increased adenosine triphosphate (ATP) generation. Bioenergetic profile was aberrant in cultured rat Schwann cells under high-glucose conditions, which was remarkably corrected by JMT treatment. In-vivo and in-vitro studies revealed that these effects of JMT were mainly attributed to the activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK) and downstream peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Our results expand the therapeutic framework for DPN and suggest the integrative modulation of energy metabolism using TCMs, such as JMT, as an effective strategy for its treatment. 展开更多
关键词 Diabetic peripheral neuropathy JinMaiTong Energy metabolism Targeted metabolomics Adenosine monophosphate-activated protein kinase
下载PDF
The potential of herbal drugs to treat heart failure:The roles of Sirt1/AMPK
15
作者 Tao Zhang Lei Xu +5 位作者 Xiaowei Guo Honglin Tao Yue Liu Xianfeng Liu Yi Zhang Xianli Meng 《Journal of Pharmaceutical Analysis》 SCIE CAS 2024年第2期157-176,共20页
Heart failure(HF)is a highly morbid syndrome that seriously affects the physical and mental health of patients and generates an enormous socio-economic burden.In addition to cardiac myocyte oxidative stress and apopto... Heart failure(HF)is a highly morbid syndrome that seriously affects the physical and mental health of patients and generates an enormous socio-economic burden.In addition to cardiac myocyte oxidative stress and apoptosis,which are considered mechanisms for the development of HF,alterations in cardiac energy metabolism and pathological autophagy also contribute to cardiac abnormalities and ultimately HF.Silent information regulator 1(Sirt1)and adenosine monophosphate-activated protein kinase(AMPK)are nicotinamide adenine dinucleotide(NAD+)-dependent deacetylases and phosphorylated kinases,respectively.They play similar roles in regulating some pathological processes of the heart through regulating targets such as peroxisome proliferator-activated receptorγcoactivator 1α(PGC-1α),protein 38 mitogen-activated protein kinase(p38 MAPK),peroxisome proliferator-activated receptors(PPARs),and mammalian target of rapamycin(mTOR).We summarized the synergistic effects of Sirt1 and AMPK in the heart,and listed the traditional Chinese medicine(TCM)that exhibit cardioprotective properties by modulating the Sirt1/AMPK pathway,to provide a basis for the development of Sirt1/AMPK activators or inhibitors for the treatment of HF and other cardiovascular diseases(CVDs). 展开更多
关键词 Heart failure Silent information regulator 1 Adenosine monophosphate-activated protein kinase Traditional Chinese medicine
下载PDF
Effects of Mitochondrial Dysfunction via AMPK/PGC-1α Signal Pathway on Pathogenic Mechanism of Diabetic Peripheral Neuropathy and the Protective Effects of Chinese Medicine 被引量:20
16
作者 ZHANG Qian LIANG Xiao-chun 《Chinese Journal of Integrative Medicine》 SCIE CAS CSCD 2019年第5期386-394,共9页
Diabetic peripheral neuropathy(DPN) is a progressive neurodegenerative disease of peripheral nervous system with high energy requirement. The adenosine monophosphate-activated protein kinase(AMPK)/peroxisome prolifera... Diabetic peripheral neuropathy(DPN) is a progressive neurodegenerative disease of peripheral nervous system with high energy requirement. The adenosine monophosphate-activated protein kinase(AMPK)/peroxisome proliferator-activated receptor-γ coactivator 1α(PGC-1α) axis plays a key role in regulating mitochondrial energy metabolism. Increasing preclinical evidences have shown that inhibition of AMPK/PGC-1α pathway leading to mitochondrial dysfunction in neurons or Schwann cells contributes to neuron apoptosis, distal axonopathy and nerve demyelination in DPN. Some Chinese medicine formulae or extracts from herbs may have potential neuroprotective effects on DPN via activating AMPK/PGC-1α pathway and improving mitochondrial function. 展开更多
关键词 monophosphate-activated protein kinase PEROXISOME proliferator-activated receptor-γ COACTIVATOR SIRTUINS diabetic peripheral NEUROPATHY Chinese medicine
原文传递
Mechanisms of insulin resistance in obesity 被引量:15
17
作者 Jianping Ye 《Frontiers of Medicine》 SCIE CSCD 2013年第1期14-24,共11页
Obesity increases the risk for type 2 diabetes through induction of insulin resistance.Treatment of type 2 diabetes has been limited by little translational knowledge of insulin resistance although there have been sev... Obesity increases the risk for type 2 diabetes through induction of insulin resistance.Treatment of type 2 diabetes has been limited by little translational knowledge of insulin resistance although there have been several well-documented hypotheses for insulin resistance.In those hypotheses,inflammation,mitochondrial dysfunction,hyperinsulinemia and lipotoxicity have been the major concepts and have received a lot of attention.Oxidative stress,endoplasmic reticulum(ER)stress,genetic background,aging,fatty liver,hypoxia and lipodystrophy are active subjects in the study of these concepts.However,none of those concepts or views has led to an effective therapy for type 2 diabetes.The reason is that there has been no consensus for a unifying mechanism of insulin resistance.In this review article,literature is critically analyzed and reinterpreted for a new energy-based concept of insulin resistance,in which insulin resistance is a result of energy surplus in cells.The energy surplus signal is mediated by ATP and sensed by adenosine monophosphate-activated protein kinase(AMPK)signaling pathway.Decreasing ATP level by suppression of production or stimulation of utilization is a promising approach in the treatment of insulin resistance.In support,many of existing insulin sensitizing medicines inhibit ATP production in mitochondria.The effective therapies such as weight loss,exercise,and caloric restriction all reduce ATP in insulin sensitive cells.This new concept provides a unifying cellular and molecular mechanism of insulin resistance in obesity,which may apply to insulin resistance in aging and lipodystrophy. 展开更多
关键词 type 2 diabetes energy expenditure inflammation LIPOTOXICITY MITOCHONDRIA HYPERINSULINEMIA adenosine monophosphate-activated protein kinase(AMPK)
原文传递
Expression and significance of fat mass and obesity associated gene and forkhead transcription factor O1 in non-alcoholic fatty liver disease 被引量:9
18
作者 Zhang Jielei Li Shan +7 位作者 Li Jingyi Han Chao Wang Zhifang Li Chong Wang Xiaoman Liu Zhenzhen Wen Jianguo Zheng Lili 《Chinese Medical Journal》 SCIE CAS CSCD 2014年第21期3771-3776,共6页
Background Non-alcoholic fatty liver disease (NAFLD) is a complex disorder and has been closely linked to obesity.The fat mass and obesity-associated (FTO) gene is a newly discovered gene related to obesity,which ... Background Non-alcoholic fatty liver disease (NAFLD) is a complex disorder and has been closely linked to obesity.The fat mass and obesity-associated (FTO) gene is a newly discovered gene related to obesity,which enhances oxidative stress and tipogenesis in NAFLD.The forkhead transcription factor O1 (FoxO1) is another important gene involved in NAFLD,which causes lipid disorders when insulin resistance appears in the liver.However,the interactions between FTO and FoxO1 during the pathogenesis of NAFLD have not been fully elucidated.This study was designed to identify the relationship between these two factors that are involved in the development of NAFLD.Methods This study includes two parts referred to as animal and cell experiments.Twelve female SPF C57BL/6 mice were fed a high-fat diet to serve as an NAFLD animal model.Aspartate aminotransferase (AST),alanine aminotransferase (ALT),total triglyceride (TG),total cholesterol (TC),alkaline phosphatase (ALP),high-density lipoprotein (HDL),and low-density lipoprotein (LDL) were measured.Immunohistochemical analysis was used to detect the expression and histological localization of FTO,FoxO1,and adenosine monophosphate (AMP)-activated protein kinase (AMPK).The L02 cells were exposed to high fat for 24,48,or 72 hours.Oil red O staining was used to detect intracellular lipid droplets.Reverse transcription-polymerase chain reaction was used for analyzing the levels of FTO and FoxO1 mRNA.Results At the end of 10 weeks,ALP,ALT,AST,and LDL were significantly increased (P <0.01),while TC and TG were also significantly higher (P <0.05).In addition,HDL was significantly decreased (P <0.05).The FTO and FoxO1 proteins were weakly expressed in the control group,but both FTO and FoxO1 were expressed significantly higher (P <0.01) in the experimental group,and the expression of the two factors was significantly correlated.AMPK in the high-fat group showed a low level of correlation with FTO,but not with FoxO1.Oil Red O staining results showed that the cells cultured in 50% fetal bovine serum for 24,48,or 72 hours exhibited steatosis.FTO and FoxO1 mRNA were increased in the high-fat group compared with the normal group (P <0.01).The expression levels of FTO and FoxO1 mRNA were the highest at 48 hours (P <0.05).Conclusions A high-fat diet leads to higher expression of FTO,phosphorylation of FoxO1,and decreased phosphorylation of AMPK.These results suggest that the interactions between FTO and FoxO1 are closely related to the pathogenesis of NAFLD. 展开更多
关键词 fat mass and obesity associated gene forkhead box O1 non-alcoholic fatty liver disease adenosine monophosphate-activated protein kinase
原文传递
Glycerol monolaurate attenuated immunological stress and intestinal mucosal injury by regulating the gut microbiota and activating AMPK/ Nrf2 signaling pathway in lipopolysaccharide-challenged broilers 被引量:6
19
作者 Linglian Kong Zhenhua Wang +2 位作者 Chuanpi Xiao Qidong Zhu Zhigang Song 《Animal Nutrition》 SCIE CSCD 2022年第3期347-359,共13页
This study was conducted to investigate the effects of glycerol monolaurate(GML)on lipopolysaccharide(LPS)-induced immunological stress and intestinal mucosal injury in broilers and its underlying mechanisms.A total o... This study was conducted to investigate the effects of glycerol monolaurate(GML)on lipopolysaccharide(LPS)-induced immunological stress and intestinal mucosal injury in broilers and its underlying mechanisms.A total of 144 one-d-old Arbor Acres broilers were allocated to a 22 factorial arrangement involving dietary treatment(0 or 1,200 mg/kg dietary GML)and LPS challenge(injected with saline or Escherichia coli LPS on d 16,18,and 20).Samples were collected on d 21.The results revealed that dietary GML augmented serum immunoglobulin A(P=0.009)and immunoglobulin G(P<0.001)levels in challenged birds.Dietary GML normalized LPS-induced variations in serum interleukin-6,interferongamma,and LPS levels(P<0.05),jejunal villus height(P=0.030),and gene expression of interleukin-6,macrophage inflammatory protein-3 alpha,Toll-like receptor 4,nuclear factor kappa-B,caspase-1,tight junction proteins,adenosine monophosphate-activated protein kinase alpha 1(AMPKa1),nuclear factorerythroid 2-related factor 2(Nrf2),and superoxide dismutase-1(P<0.05).GML supplementation ameliorated LPS-induced peroxidation by reducing malondialdehyde content and increasing antioxidant enzyme activity(P<0.05).Dietary GML enhanced the abundances of Anaerostipes,Pseudoflavonifractor,and Gordonibacter and reduced the proportion of Phascolarctobacterium in challenged birds.Dietary GML was positively correlated with alterations in antioxidant enzyme activities and AMPKa1,Nrf2,and zonula occludens-1 expressions.The genera Anaerostipes,Lachnospira,Gordonibacter,Lachnospira,Marvinbryantia,Peptococcus,and Pseudoflavonifractor were linked to attenuated inflammation and improved antioxidant capacity of challenged birds.In conclusion,dietary GML alleviated LPS-induced immunological stress and intestinal injury of broilers by suppressing inflammation and oxidative stress.Dietary GML regulated cecal microbiota and activated the AMPK/Nrf2 pathway in LPS-challenged broilers. 展开更多
关键词 Glycerol monolaurate Lipopolysaccharide challenge Inflammation ANTIOXIDATION Gut microbiota Adenosine monophosphate-activated protein kinase
原文传递
Panax quinquefolium saponin Optimizes Energy Homeostasis by Modulating AMPK-Activated Metabolic Pathways in Hypoxia-Reperfusion Induced Cardiomyocytes 被引量:6
20
作者 YU Yong-hui ZHANG Pei +3 位作者 WANG Cheng-long LIU Jian-gang LI Peng ZHANG Da-wu 《Chinese Journal of Integrative Medicine》 SCIE CAS CSCD 2021年第8期613-620,共8页
Objective To investigate the effects and underlying mechanisms of Panax quinquefolium saponin(PQS)on energy deficiency in hypoxia-reperfusion(H/R)induced cardiomyocytes.Methods The H/R injury involved hypoxia for 3 h ... Objective To investigate the effects and underlying mechanisms of Panax quinquefolium saponin(PQS)on energy deficiency in hypoxia-reperfusion(H/R)induced cardiomyocytes.Methods The H/R injury involved hypoxia for 3 h and then reperfusion for 2 h.Cardiomyocytes recruited from neonatal rat ventricular myocytes(NRVMs)were randomly divided into control,H/R,H/R+compound C(C.C),H/R+PQS,and H/R+C.C+PQS groups.BrdU assay,lactase dehydrogenase(LDH)leakage and early apoptosis rate were evaluated to assess cell damages.Contents of high energy phosphate compounds were conducted to detect the energy production.Protein expression levels of adenosine monophosphate-activated protein kinase a(AMPKα),glucose transporter 4(GLUT4),phosphate fructose kinase 2(PFK2),fatty acid translocase/cluster of differentiation 36(FAT/CD36),and acetyl CoA carboxylase 2(ACC2)in the regulatory pathways were measured by Western blotting.Immunofluorescence staining of GLUT4 and FAT/CD36 was used to observe the mobilization of metabolic transporters.Results PQS(50 mg/L)pretreatment significantly alleviated H/R-induced inhibition of NRVMs viability,up-regulation of LDH leakage,acceleration of early apoptosis,and reduction of energy production(P<0.05).Compared with the H/R group,up-regulated expression of AMPKα,GLUT4,PFK2,FAT/CD36 and ACC2 were observed,and more GLUT4 and FAT/CD36 expressions were detected on the membrane in the H/R+PQS group(P<0.05).These effects of PQS on H/R-induced NRVMs were eliminated in the H/R+C.C+PQS group(P<0.05).Conclusion PQS has prominent advantages in protecting NRVMs from H/R-induced cell damages and energy metabolic disorders,by activation of AMPKα-mediated GLUT4-PFK2 and FAT/CD36-ACC2 pathways. 展开更多
关键词 Panax quinquefolium saponin Chinese medicine neonatal rat ventricular myocytes hypoxia-reperfusion energy metabolism adenosine monophosphate-activated protein kinaseαpathways
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部