The synthesis of T_8, T_ 10 and T_ 12 silsesquioxane cages from a range of starting materials: phenyl-cis-tetrol, 1,3-divinyltetraethoxydisiloxane and cyclopentyl T resins by using tetra n-butylammonium fluoride(TBA...The synthesis of T_8, T_ 10 and T_ 12 silsesquioxane cages from a range of starting materials: phenyl-cis-tetrol, 1,3-divinyltetraethoxydisiloxane and cyclopentyl T resins by using tetra n-butylammonium fluoride(TBAF) as the catalyst is described in this paper. The reaction yields obtained viathe current route are better compared to those viathe literature routes. Some of the cage compounds have been characterized by X-ray crystallography.展开更多
The flame-retarded polycarbonate(PC) has been made with octaphenyl polyhedral silsesquioxane(OPS) and/or caged bicyclic phosphate(Trimer).Thermal gravimetric analysis(TGA),Fourier-transform infrared(FTIR),TG...The flame-retarded polycarbonate(PC) has been made with octaphenyl polyhedral silsesquioxane(OPS) and/or caged bicyclic phosphate(Trimer).Thermal gravimetric analysis(TGA),Fourier-transform infrared(FTIR),TGA-FTIR,limiting oxygen index(LOI),and mechanical tests have been employed to characterize the modified PC.The additives of OPS and Trimer in PC have been proved to be effective flame-retardants because of the synergistic interaction between the elements of P and Si.The role of OPS and Trimer in PC degradation are different:OPS participates in the charring of PC,while Trimer makes PC degrade in advance.In addition,OPS and Trimer induced obvious differences in the mechanical properties of PC.展开更多
Cage-like octa(trimethylsiloxy)silsesquioxane [(Me3SiO)SiO1.5]8 has been synthesized via the trimethylsilylation of cubic tetramethylammonium silicate octamer [(Me4NO)-SiO1.5]8 with chlorotrimethylsilane. The silicate...Cage-like octa(trimethylsiloxy)silsesquioxane [(Me3SiO)SiO1.5]8 has been synthesized via the trimethylsilylation of cubic tetramethylammonium silicate octamer [(Me4NO)-SiO1.5]8 with chlorotrimethylsilane. The silicate octamer can be selectively formed by the reaction of tetraethoxysilane Si(OEt)4 with aqueous tetramethylammonium hydroxide in equal展开更多
考察了2,3-环氧丙氧乙基笼型倍半硅氧烷(G-POSS)对聚氯乙烯(PVC)共混物力学和热性能的影响。结果表明:加入G-POSS可缩短PVC的塑化时间;100 g PVC中G-POSS用量不超过7 g时共混物的拉伸强度得到提高;加入G-POSS可改善PVC的耐热性能,G-POS...考察了2,3-环氧丙氧乙基笼型倍半硅氧烷(G-POSS)对聚氯乙烯(PVC)共混物力学和热性能的影响。结果表明:加入G-POSS可缩短PVC的塑化时间;100 g PVC中G-POSS用量不超过7 g时共混物的拉伸强度得到提高;加入G-POSS可改善PVC的耐热性能,G-POSS用量为13 g时,共混物的维卡软化温度和初始分解温度分别提高12,27℃。展开更多
文摘The synthesis of T_8, T_ 10 and T_ 12 silsesquioxane cages from a range of starting materials: phenyl-cis-tetrol, 1,3-divinyltetraethoxydisiloxane and cyclopentyl T resins by using tetra n-butylammonium fluoride(TBAF) as the catalyst is described in this paper. The reaction yields obtained viathe current route are better compared to those viathe literature routes. Some of the cage compounds have been characterized by X-ray crystallography.
基金Sponsored by the National High Technology Research and Development Program of China("863"Program)(2007AA03Z538)
文摘The flame-retarded polycarbonate(PC) has been made with octaphenyl polyhedral silsesquioxane(OPS) and/or caged bicyclic phosphate(Trimer).Thermal gravimetric analysis(TGA),Fourier-transform infrared(FTIR),TGA-FTIR,limiting oxygen index(LOI),and mechanical tests have been employed to characterize the modified PC.The additives of OPS and Trimer in PC have been proved to be effective flame-retardants because of the synergistic interaction between the elements of P and Si.The role of OPS and Trimer in PC degradation are different:OPS participates in the charring of PC,while Trimer makes PC degrade in advance.In addition,OPS and Trimer induced obvious differences in the mechanical properties of PC.
文摘Cage-like octa(trimethylsiloxy)silsesquioxane [(Me3SiO)SiO1.5]8 has been synthesized via the trimethylsilylation of cubic tetramethylammonium silicate octamer [(Me4NO)-SiO1.5]8 with chlorotrimethylsilane. The silicate octamer can be selectively formed by the reaction of tetraethoxysilane Si(OEt)4 with aqueous tetramethylammonium hydroxide in equal
文摘考察了2,3-环氧丙氧乙基笼型倍半硅氧烷(G-POSS)对聚氯乙烯(PVC)共混物力学和热性能的影响。结果表明:加入G-POSS可缩短PVC的塑化时间;100 g PVC中G-POSS用量不超过7 g时共混物的拉伸强度得到提高;加入G-POSS可改善PVC的耐热性能,G-POSS用量为13 g时,共混物的维卡软化温度和初始分解温度分别提高12,27℃。