Based on monthly ECMWF reanalysis-Interim (ERA-Interim) reanalysis data, along with monthly precipitation and temperature data, the Dynamic Plateau Monsoon Index (DPMI) is defined. The results of a contrast analys...Based on monthly ECMWF reanalysis-Interim (ERA-Interim) reanalysis data, along with monthly precipitation and temperature data, the Dynamic Plateau Monsoon Index (DPMI) is defined. The results of a contrast analysis of the DPMI versus the Traditional Plateau Monsoon Index (TPMI) are described. The response of general circulation to northern Qinghai-Xizang Plateau summer monsoon anomalies and the correlation of the DPMI with general circulation anomalies are investigated. The results show that, the DPMI reflected meteorological elements better and depicted climate variation more accurately than the TPMI. In years when the plateau summer monsoon is strong, the low over the plateau and the trough near the eastern coast of Asia are deeper and higher than normal over South China. This correlation corresponds to two anomalous cyclones over the plateau and the eastern coast of Asia and an anomalous anticyclone in South China. The plateau and its adjacent regions are affected by anomalous southwesterly winds that transport more moisture to South China and cause more precipitation. The lower reaches of the Yangtze River appear to receive more precipitation by means of the strong westerly water vapor flow transported from the "large triangle affecting the region". In years when the plateau summer monsoon is weak, these are opposite. The plateau monsoon is closely related to the intensity and position of the South Asian high, and the existence of a teleconnection pattern in the mid-upper levels suggests a possible linkage of the East Asian monsoon and the Indian monsoon to the plateau summer monsoon.展开更多
In recent decades,the damage and economic losses caused by climate change and extreme climate events have been increasing rapidly.Although scientists all over the world have made great efforts to understand and predic...In recent decades,the damage and economic losses caused by climate change and extreme climate events have been increasing rapidly.Although scientists all over the world have made great efforts to understand and predict climatic variations,there are still several major problems for improving climate prediction.In 2020,the Center for Climate System Prediction Research(CCSP) was established with support from the National Natural Science Foundation of China.CCSP aims to tackle three scientific problems related to climate prediction—namely,El Ni?o-Southern Oscillation(ENSO) prediction,extended-range weather forecasting,and interannual-to-decadal climate prediction—and hence provide a solid scientific basis for more reliable climate predictions and disaster prevention.In this paper,the major objectives and scientific challenges of CCSP are reported,along with related achievements of its research groups in monsoon dynamics,land-atmosphere interaction and model development,ENSO variability,intraseasonal oscillation,and climate prediction.CCSP will endeavor to tackle key scientific problems in these areas.展开更多
基金supported by the National Basic Research Program of China(Grant Nos. 2010CB951701 and 2012CB026101)the National Natural Science Foundation of China(Grant Nos.41175068, 40875005 and 40810059006)+2 种基金the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.KZCX2-YW-Q11-01)the Gansu Key Science and Technology Program(Grant No.1001JKDA001)the European Commission(Call FP7-ENV-2007-1,Grant No. 212921)
文摘Based on monthly ECMWF reanalysis-Interim (ERA-Interim) reanalysis data, along with monthly precipitation and temperature data, the Dynamic Plateau Monsoon Index (DPMI) is defined. The results of a contrast analysis of the DPMI versus the Traditional Plateau Monsoon Index (TPMI) are described. The response of general circulation to northern Qinghai-Xizang Plateau summer monsoon anomalies and the correlation of the DPMI with general circulation anomalies are investigated. The results show that, the DPMI reflected meteorological elements better and depicted climate variation more accurately than the TPMI. In years when the plateau summer monsoon is strong, the low over the plateau and the trough near the eastern coast of Asia are deeper and higher than normal over South China. This correlation corresponds to two anomalous cyclones over the plateau and the eastern coast of Asia and an anomalous anticyclone in South China. The plateau and its adjacent regions are affected by anomalous southwesterly winds that transport more moisture to South China and cause more precipitation. The lower reaches of the Yangtze River appear to receive more precipitation by means of the strong westerly water vapor flow transported from the "large triangle affecting the region". In years when the plateau summer monsoon is weak, these are opposite. The plateau monsoon is closely related to the intensity and position of the South Asian high, and the existence of a teleconnection pattern in the mid-upper levels suggests a possible linkage of the East Asian monsoon and the Indian monsoon to the plateau summer monsoon.
基金supported by the National Natural Science Foundation of China [grant number 42088101]。
文摘In recent decades,the damage and economic losses caused by climate change and extreme climate events have been increasing rapidly.Although scientists all over the world have made great efforts to understand and predict climatic variations,there are still several major problems for improving climate prediction.In 2020,the Center for Climate System Prediction Research(CCSP) was established with support from the National Natural Science Foundation of China.CCSP aims to tackle three scientific problems related to climate prediction—namely,El Ni?o-Southern Oscillation(ENSO) prediction,extended-range weather forecasting,and interannual-to-decadal climate prediction—and hence provide a solid scientific basis for more reliable climate predictions and disaster prevention.In this paper,the major objectives and scientific challenges of CCSP are reported,along with related achievements of its research groups in monsoon dynamics,land-atmosphere interaction and model development,ENSO variability,intraseasonal oscillation,and climate prediction.CCSP will endeavor to tackle key scientific problems in these areas.