Using two datasets of global pentad grid precipitation and global 850 hPa geopotential height during 1979-2007,this study identified global monsoon troughs and global atmospheric centers of action (ACAs) on a pentad s...Using two datasets of global pentad grid precipitation and global 850 hPa geopotential height during 1979-2007,this study identified global monsoon troughs and global atmospheric centers of action (ACAs) on a pentad scale.The global monsoon troughs consist of planetary-scale monsoon troughs and peninsula-scale monsoon troughs.Forced by seasonal variations in solar radiation,the inter-tropical convergence zones (ITCZs) represent the planetary-scale monsoon troughs,which are active and shift over the tropical North Pacific,the tropical North Atlantic,and the tropical South Indian oceans.The peninsula-scale monsoon troughs are originated from regional land-sea topography and varied with contrasts in seasonal land-sea surface temperatures and precipitation.During the boreal summer,five peninsula-scale troughs and one planetary-scale trough are distributed in the Asia-Northwest Pacific (NWP) region.In total,22 troughs,nine monsoon troughs,and 19 ACAs in the lower troposphere were identified.Relevant ACAs may be useful in constructing regional monsoon and circulation indices.展开更多
The monsoon trough (MT) is one of the large-scale patterns favorable for tropical cyclone (TC) formation over the western North Pacific (WNP). This study re-examines TC formation by treating the MT as a large-sc...The monsoon trough (MT) is one of the large-scale patterns favorable for tropical cyclone (TC) formation over the western North Pacific (WNP). This study re-examines TC formation by treating the MT as a large-scale background for TC activity during May-October. Over an 11-year (2000-10) period, 8.3 TC formation events on average per year are identified to occur within MTs, accounting for 43.1% of the total TC formation events in the WNP basin. This percentage is much lower than those reported in previous studies. Further analysis indicates that TC formation events in monsoon gyres were included at least in some previous studies. The MT includes a monsoon confluence zone where westerlies meet easterlies and a monsoon shear line where the trade easterlies lie north of the monsoon westerlies. In this study, the large-scale flow pattern associated with TC formation in the MT is composited based on the reference point in the confluence zone where both the zonal and meridional wind components are zero with positive vorticity. While previous studies have found that many TCs form in the confluence zone, the composite analysis indicates that nearly all of the TCs formed in the shear region, since the shear region is associated with stronger low-level relative vorticity than the confluence zone. The prevailing easterly vertical shear of zonal wind and barotropic instability may also be conducive to TC formation in the shear region, through the development of synoptic-scale tropical disturbances in the MT that are necessary for TC formation.展开更多
Using the daily average of the NCEP/DOE AMIP-II reanalysis data from 1979 to 2005 and the characteristics of monsoon troughs in the western North Pacific,we established an intensity index and a location index to descr...Using the daily average of the NCEP/DOE AMIP-II reanalysis data from 1979 to 2005 and the characteristics of monsoon troughs in the western North Pacific,we established an intensity index and a location index to describe the activity of the monsoon troughs in three different regions and their impacts on tropical cyclones generated therein(MTTCs).The behavior of the monsoon troughs was analyzed.The following conclusions are obtained:(1)The established monsoon trough intensity index has a positive correlation to the location index,indicating that stronger monsoon trough intensity corresponds to more northward location.(2)Monsoon trough intensity exhibits significant interannual variation,with obvious periods of 4–5 years prior to 1994 and 2–3 years afterwards.(3)The affecting factors on monsoon trough intensity are different with areas.The preceding SST anomaly results in anomalous atmospheric circulation, leading to the anomaly of monsoon trough intensity in different areas.(4)The frequency of cyclogenesis and location anomalies of the MTTC are closely related to the intensity and location of the monsoon trough. Most of the anomalously less MTTC years coincide with the years with a weak general monsoon trough and weak regional monsoon troughs.The anomalously more MTTC years are associated with both a strong general monsoon trough and a weak general monsoon trough combined with a strong one over the South China Sea,though with a larger probability for the latter.(5)The interseasonal variation of the intensity of monsoon troughs provides favorable conditions for TC generation and development.The monsoon trough is in the active periods of both quasi-biweekly 10 to 20 day and 30 to 60 day oscillations,which is favorable for MTTC occurrence.展开更多
In this paper, we mainly summarize and review the progresses in recent climatological studies(by CMSR,IAP/CAS and some associated domestic and international institutions) on the interannual and interdecadal variabilit...In this paper, we mainly summarize and review the progresses in recent climatological studies(by CMSR,IAP/CAS and some associated domestic and international institutions) on the interannual and interdecadal variabilities of monsoon troughs and their impacts on tropical cyclones and typhoons(TCs) geneses over the western North Pacific Ocean. The climatological characteristics of monsoon troughs and four types of circulation patterns favorable to TCs genesis over the western North Pacific Ocean in summer and autumn are given in this paper. It is also shown in this paper that the monsoon trough over the western North Pacific Ocean has obvious interannual and interdecadal variabilities. Especially, it is revealed in this paper that the interannual and interdecadal variabilities of the monsoon trough over the western North Pacific Ocean influence the TCs genesis not only through the impact on distributions of the vorticity in the lower troposphere and the divergence in the upper troposphere, the water vapor in the mid-and lower troposphere and the vertical shear of wind fields between the upper and lower troposphere over the western North Pacific Ocean, but also through the dynamical effects of the transition between convectively coupled tropical waves and providing disturbance energy. Besides, some climatological problems associated with TCs activity over the western North Pacific Ocean that need to be studied further are also pointed out in this paper.展开更多
Based on NCEP/NCAR reanalysis data, an investigation has been carried on the comparison of the double summer monsoon troughs over East Asia, which refer to the subtropical summer monsoon trough (subtropical-trough) ...Based on NCEP/NCAR reanalysis data, an investigation has been carried on the comparison of the double summer monsoon troughs over East Asia, which refer to the subtropical summer monsoon trough (subtropical-trough) and the South China Sea summer monsoon trough (SCS trough), respectively. The results show that the SCS trough is stronger than the subtropical-trough either in convergence or convection. The subtropical-trough extends up to higher levels and inclines northward with altitude, while, the SCS trough extends up to a lower level, and its position is seldom changed. The SCS trough establishes early and abruptly with the low level positive relative vorticity appearing suddenly, and retreats slowly, but the subtropical-trough establishes step by step with the positive relative vorticity initially over the Yunnan- Guizhou Plateau and Guangxi areas spreading gradually northeastward, and withdraws rapidly. The onset of SCS trough is obviously indicated by the reverse of the easterly, but the establishment of the subtropical- trough is characteristic of the westerly enhancement. The subtropical-trough has clearly frontal property, yet the SCS trough has not.展开更多
The synoptic-scale wave train is a dominant pattern of the synoptic variability over the tropical western Pacific and usually affects the extreme weather over South China and Southeast Asia.Whether it could extend its...The synoptic-scale wave train is a dominant pattern of the synoptic variability over the tropical western Pacific and usually affects the extreme weather over South China and Southeast Asia.Whether it could extend its influence and contribute to the Henan extreme rainfall in July 2021 still needs to be unraveled.We found that during the Henan extreme rainfall days a positively synoptic-scale vorticity disturbance dominated Henan province,China,which was embedded in the synoptic-scale wave train that originated from the western North Pacific.Moreover,the propagating pathway of this synoptic-scale wave train located northward and was likely modulated by the latitudinal location change of the monsoon trough over the western North Pacific.A northernmost displacement of the monsoon trough in July 2021(∼23.2°N)would facilitate the synoptic-scale wave train to propagate farther northwestward via shifting the related barotropic conversion northward.Therefore,the synoptic-scale wave train from the tropics could reach Henan,provide the necessary lifting forcing,and supply abundant water vapor associated with the anomalous southerly for the occurrence of Henan extreme rainfall event.The results implicate that the pre-existing synoptic-scale wave train regulated by the location of the monsoon trough may be a potential precursor for heavy rainfalls in northern Central China.展开更多
The intraseasonal oscillation(ISO) of the South China Sea(SCS, 105-120°E, 5-20°N) convection and its influences on the genesis and track of the western North Pacific(WNP) tropical cyclones(TCs) were explored...The intraseasonal oscillation(ISO) of the South China Sea(SCS, 105-120°E, 5-20°N) convection and its influences on the genesis and track of the western North Pacific(WNP) tropical cyclones(TCs) were explored, based on the daily average of NCEP/NCAR reanalysis data, the OLR data and the western North Pacific tropical cyclone best-track data from 1979 to 2008. The mechanism of the influences of ISO on TC movement and the corresponding large-scale circulation were discussed by a trajectory model. It was found as follows.(1) During the SCS summer monsoon, the SCS convection exhibits the ISO features with active phases alternating with inactive phases. The monsoon circulation patterns are significantly different during these two phases. When the SCS convection is active(inactive), the SCS-WNP monsoon trough stretches eastward(retreats westward) due to the activity(inactivity) of SCS monsoon, and the WNP subtropical high retreats eastward(stretches westward), which enhances(suppresses) the monsoon circulation.(2) The amount of TC genesis in the active phase is much more than that in the inactive phase. A majority of TCs form west of 135 °E during the active phases but east of 135 °E in the inactive phases.(3) The TCs entering the area west of 135 °E and south of 25 °N would move straight into the SCS in the active phase, or recurve northward in the inactive phase.(4) Simulation results show that the steering flow associated with the active(inactive)phases is in favor of straight-moving(recurving) TCs. Meanwhile, the impacts of the locations of TC genesis on the characteristics of TC track cannot be ignored. TCs that occurred father westward are more likely to move straight into the SCS region.展开更多
There is limited understanding regarding the formation of multiple tropical cyclones(MTCs).This study explores the environmental conditions conducive to MTC formation by objectively determining the atmospheric circula...There is limited understanding regarding the formation of multiple tropical cyclones(MTCs).This study explores the environmental conditions conducive to MTC formation by objectively determining the atmospheric circulation patterns favorable for MTC formation over the western North Pacific.Based on 199 MTC events occurring from June to October 1980–2020,four distinct circulation patterns are identified:the monsoon trough(MT)pattern,accounting for 40.3%of occurrences,the confluence zone(CON)pattern at 26.2%,the easterly wave(EW)pattern at 17.8%,and the monsoon gyre(MG)pattern at 15.7%.The MT pattern mainly arises from the interaction between the subtropical high and the monsoon trough,with MTCs forming along the monsoon trough and its flanks.The CON pattern is affected by the subtropical high,the South Asian high,and the monsoon trough,with MTCs emerging at the confluence zone where the prevailing southwesterly and southeasterly flows converge.The EW pattern is dominated by easterly flows,with MTCs developing along the easterly wave train.MTCs in the MG pattern arise within a monsoon vortex characterized by strong southwesterly flows.A quantitative analysis further indicates that MTC formation in the MT pattern is primarily governed by mid-level vertical velocity and low-level vorticity,while mid-level humidity and vertical velocity are significantly important in the other patterns.The meridional shear and convergence of zonal winds are essential in converting barotropic energy from the basic flows to disturbance kinetic energy,acting as the primary source for eddy kinetic energy growth.展开更多
基金supported jointly by the National Natural Science Foundation of China (40975039)the National Basic Research Program of China (2006CB403602 and 2009BAC51B04)
文摘Using two datasets of global pentad grid precipitation and global 850 hPa geopotential height during 1979-2007,this study identified global monsoon troughs and global atmospheric centers of action (ACAs) on a pentad scale.The global monsoon troughs consist of planetary-scale monsoon troughs and peninsula-scale monsoon troughs.Forced by seasonal variations in solar radiation,the inter-tropical convergence zones (ITCZs) represent the planetary-scale monsoon troughs,which are active and shift over the tropical North Pacific,the tropical North Atlantic,and the tropical South Indian oceans.The peninsula-scale monsoon troughs are originated from regional land-sea topography and varied with contrasts in seasonal land-sea surface temperatures and precipitation.During the boreal summer,five peninsula-scale troughs and one planetary-scale trough are distributed in the Asia-Northwest Pacific (NWP) region.In total,22 troughs,nine monsoon troughs,and 19 ACAs in the lower troposphere were identified.Relevant ACAs may be useful in constructing regional monsoon and circulation indices.
基金supported by the National Basic Research Program of China (Grant Nos. 2013CB430103, 2015CB452803)the National Natural Science Foundation of China (Grant No. 41275093)the project of the "Specially-Appointed Professorship" of Jiangsu Province
文摘The monsoon trough (MT) is one of the large-scale patterns favorable for tropical cyclone (TC) formation over the western North Pacific (WNP). This study re-examines TC formation by treating the MT as a large-scale background for TC activity during May-October. Over an 11-year (2000-10) period, 8.3 TC formation events on average per year are identified to occur within MTs, accounting for 43.1% of the total TC formation events in the WNP basin. This percentage is much lower than those reported in previous studies. Further analysis indicates that TC formation events in monsoon gyres were included at least in some previous studies. The MT includes a monsoon confluence zone where westerlies meet easterlies and a monsoon shear line where the trade easterlies lie north of the monsoon westerlies. In this study, the large-scale flow pattern associated with TC formation in the MT is composited based on the reference point in the confluence zone where both the zonal and meridional wind components are zero with positive vorticity. While previous studies have found that many TCs form in the confluence zone, the composite analysis indicates that nearly all of the TCs formed in the shear region, since the shear region is associated with stronger low-level relative vorticity than the confluence zone. The prevailing easterly vertical shear of zonal wind and barotropic instability may also be conducive to TC formation in the shear region, through the development of synoptic-scale tropical disturbances in the MT that are necessary for TC formation.
基金An open project of Key Laboratory for Meteorological Disasters for Jiangsu Province(KLME0708)Natural Science Foundation of China(90915002+2 种基金4077504740775058)A project of Young Talents for Fujian Province(2007F3019)
文摘Using the daily average of the NCEP/DOE AMIP-II reanalysis data from 1979 to 2005 and the characteristics of monsoon troughs in the western North Pacific,we established an intensity index and a location index to describe the activity of the monsoon troughs in three different regions and their impacts on tropical cyclones generated therein(MTTCs).The behavior of the monsoon troughs was analyzed.The following conclusions are obtained:(1)The established monsoon trough intensity index has a positive correlation to the location index,indicating that stronger monsoon trough intensity corresponds to more northward location.(2)Monsoon trough intensity exhibits significant interannual variation,with obvious periods of 4–5 years prior to 1994 and 2–3 years afterwards.(3)The affecting factors on monsoon trough intensity are different with areas.The preceding SST anomaly results in anomalous atmospheric circulation, leading to the anomaly of monsoon trough intensity in different areas.(4)The frequency of cyclogenesis and location anomalies of the MTTC are closely related to the intensity and location of the monsoon trough. Most of the anomalously less MTTC years coincide with the years with a weak general monsoon trough and weak regional monsoon troughs.The anomalously more MTTC years are associated with both a strong general monsoon trough and a weak general monsoon trough combined with a strong one over the South China Sea,though with a larger probability for the latter.(5)The interseasonal variation of the intensity of monsoon troughs provides favorable conditions for TC generation and development.The monsoon trough is in the active periods of both quasi-biweekly 10 to 20 day and 30 to 60 day oscillations,which is favorable for MTTC occurrence.
基金National Natural Science Foundation of China(41375065)National Natural Science Foundation of China(41461164005,41230527)National Key Research and Development Program of China(2016YFA0600603)
文摘In this paper, we mainly summarize and review the progresses in recent climatological studies(by CMSR,IAP/CAS and some associated domestic and international institutions) on the interannual and interdecadal variabilities of monsoon troughs and their impacts on tropical cyclones and typhoons(TCs) geneses over the western North Pacific Ocean. The climatological characteristics of monsoon troughs and four types of circulation patterns favorable to TCs genesis over the western North Pacific Ocean in summer and autumn are given in this paper. It is also shown in this paper that the monsoon trough over the western North Pacific Ocean has obvious interannual and interdecadal variabilities. Especially, it is revealed in this paper that the interannual and interdecadal variabilities of the monsoon trough over the western North Pacific Ocean influence the TCs genesis not only through the impact on distributions of the vorticity in the lower troposphere and the divergence in the upper troposphere, the water vapor in the mid-and lower troposphere and the vertical shear of wind fields between the upper and lower troposphere over the western North Pacific Ocean, but also through the dynamical effects of the transition between convectively coupled tropical waves and providing disturbance energy. Besides, some climatological problems associated with TCs activity over the western North Pacific Ocean that need to be studied further are also pointed out in this paper.
基金Supported jointly by the Jiangsu Key Laboratory of Meteorological Disaster (KLME060204)Natural Science Fundamental Research of Higher Education Colleges in Jiangsu Province (06KJB170050)National Natural Science Foundation of China (40575045).
文摘Based on NCEP/NCAR reanalysis data, an investigation has been carried on the comparison of the double summer monsoon troughs over East Asia, which refer to the subtropical summer monsoon trough (subtropical-trough) and the South China Sea summer monsoon trough (SCS trough), respectively. The results show that the SCS trough is stronger than the subtropical-trough either in convergence or convection. The subtropical-trough extends up to higher levels and inclines northward with altitude, while, the SCS trough extends up to a lower level, and its position is seldom changed. The SCS trough establishes early and abruptly with the low level positive relative vorticity appearing suddenly, and retreats slowly, but the subtropical-trough establishes step by step with the positive relative vorticity initially over the Yunnan- Guizhou Plateau and Guangxi areas spreading gradually northeastward, and withdraws rapidly. The onset of SCS trough is obviously indicated by the reverse of the easterly, but the establishment of the subtropical- trough is characteristic of the westerly enhancement. The subtropical-trough has clearly frontal property, yet the SCS trough has not.
基金National Natural Science Foundation of China(41875087,42030601 and 42105017)Applied Technology Research Fund of CMA·Henan Key Laboratory of Agrometeorological Support and Applied Technique(KQ202160).
文摘The synoptic-scale wave train is a dominant pattern of the synoptic variability over the tropical western Pacific and usually affects the extreme weather over South China and Southeast Asia.Whether it could extend its influence and contribute to the Henan extreme rainfall in July 2021 still needs to be unraveled.We found that during the Henan extreme rainfall days a positively synoptic-scale vorticity disturbance dominated Henan province,China,which was embedded in the synoptic-scale wave train that originated from the western North Pacific.Moreover,the propagating pathway of this synoptic-scale wave train located northward and was likely modulated by the latitudinal location change of the monsoon trough over the western North Pacific.A northernmost displacement of the monsoon trough in July 2021(∼23.2°N)would facilitate the synoptic-scale wave train to propagate farther northwestward via shifting the related barotropic conversion northward.Therefore,the synoptic-scale wave train from the tropics could reach Henan,provide the necessary lifting forcing,and supply abundant water vapor associated with the anomalous southerly for the occurrence of Henan extreme rainfall event.The results implicate that the pre-existing synoptic-scale wave train regulated by the location of the monsoon trough may be a potential precursor for heavy rainfalls in northern Central China.
基金National Basic Research Program of China(2015CB953904)National Natural Science Foundation of China(41575081)+1 种基金Startup Foundation for Introducing Talent of NUIST(2015r035)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘The intraseasonal oscillation(ISO) of the South China Sea(SCS, 105-120°E, 5-20°N) convection and its influences on the genesis and track of the western North Pacific(WNP) tropical cyclones(TCs) were explored, based on the daily average of NCEP/NCAR reanalysis data, the OLR data and the western North Pacific tropical cyclone best-track data from 1979 to 2008. The mechanism of the influences of ISO on TC movement and the corresponding large-scale circulation were discussed by a trajectory model. It was found as follows.(1) During the SCS summer monsoon, the SCS convection exhibits the ISO features with active phases alternating with inactive phases. The monsoon circulation patterns are significantly different during these two phases. When the SCS convection is active(inactive), the SCS-WNP monsoon trough stretches eastward(retreats westward) due to the activity(inactivity) of SCS monsoon, and the WNP subtropical high retreats eastward(stretches westward), which enhances(suppresses) the monsoon circulation.(2) The amount of TC genesis in the active phase is much more than that in the inactive phase. A majority of TCs form west of 135 °E during the active phases but east of 135 °E in the inactive phases.(3) The TCs entering the area west of 135 °E and south of 25 °N would move straight into the SCS in the active phase, or recurve northward in the inactive phase.(4) Simulation results show that the steering flow associated with the active(inactive)phases is in favor of straight-moving(recurving) TCs. Meanwhile, the impacts of the locations of TC genesis on the characteristics of TC track cannot be ignored. TCs that occurred father westward are more likely to move straight into the SCS region.
基金supported by the National Natural Science Foundation of China(Grant No.42075015)the Science and Technology Commission of Shanghai Municipality,China(23DZ1204703).
文摘There is limited understanding regarding the formation of multiple tropical cyclones(MTCs).This study explores the environmental conditions conducive to MTC formation by objectively determining the atmospheric circulation patterns favorable for MTC formation over the western North Pacific.Based on 199 MTC events occurring from June to October 1980–2020,four distinct circulation patterns are identified:the monsoon trough(MT)pattern,accounting for 40.3%of occurrences,the confluence zone(CON)pattern at 26.2%,the easterly wave(EW)pattern at 17.8%,and the monsoon gyre(MG)pattern at 15.7%.The MT pattern mainly arises from the interaction between the subtropical high and the monsoon trough,with MTCs forming along the monsoon trough and its flanks.The CON pattern is affected by the subtropical high,the South Asian high,and the monsoon trough,with MTCs emerging at the confluence zone where the prevailing southwesterly and southeasterly flows converge.The EW pattern is dominated by easterly flows,with MTCs developing along the easterly wave train.MTCs in the MG pattern arise within a monsoon vortex characterized by strong southwesterly flows.A quantitative analysis further indicates that MTC formation in the MT pattern is primarily governed by mid-level vertical velocity and low-level vorticity,while mid-level humidity and vertical velocity are significantly important in the other patterns.The meridional shear and convergence of zonal winds are essential in converting barotropic energy from the basic flows to disturbance kinetic energy,acting as the primary source for eddy kinetic energy growth.