The transition of the global atmospheric circulation in the end of 1970's can clearly be detected in the atmospheric temperature, wind velocity, and so on. Wavelet analysis reveals that the temporal scale of this ...The transition of the global atmospheric circulation in the end of 1970's can clearly be detected in the atmospheric temperature, wind velocity, and so on. Wavelet analysis reveals that the temporal scale of this change is larger than 20 years. Studies in this work indicate that the trend of the transition over the mid-latitude Asia is opposite to that of global average for some variables at the middle troposphere. Another finding of this research is that the African-Asian monsoon circulation is weaker and the trade wind over the tropical eastern Pacific is weaker as well after this transition. Such a signal may be found in the summer precipitation over China as well. Key words Asian monsoon circulation - Weakening - Transition This research was supported by the key project of Chinese Academy of Sciences under Contract KZCX2-203 and the key program of the National Natural Science Foundation of China under Contract 49894170.展开更多
Two numerical simulations of forced local Hadley circulation are carried out based on a linear diagnostic equation to provide an insight into the mechanisms of monsoon evolution in different monsoon regions. One simul...Two numerical simulations of forced local Hadley circulation are carried out based on a linear diagnostic equation to provide an insight into the mechanisms of monsoon evolution in different monsoon regions. One simulation is for the zonal mean Hadley circulation over East Asia (from 95°E to 122.5°E), another over India (from 70°E to 85°E). With the NCEP/ NCAR re-analysis data re—processed by Chinese Academy of Science in Beijing, the former simulation displays a dominant anti—Hadley circulation pattern over East Asia at 1200 UTC May 1, 1994. The simulated circulation pattern is consistent well enough with the circulation pattern plotted directly from the data for lack of the radiation information at each level. Although the simulation over India is not as good as that over East Asia, a dominant Hadley circulation pattern is obvious as data show. Further analysis shows that the defective simulation over India is due to the presence of statically unstable condition at some grid points in the lower troposphere. This circumstance slightly violates the hydrodynamic stability criterion required by the elliptic diagnostic equation for the forced circulation. Since the simulations are reliable enough compared with the given data, the linear equation facilitates a systematic assessment of relative importance of each internally forcing process. The assessment shows that among the internal processes, the horizontal temperature advections account obviously for the Hadley (anti—Hadley) circulation over India (East Asia) at 1200 UTC May 1, 1994 in addition to the process associated with the latent heat releasing. The calculation of latent heat energy is a little bit unreliable due to the unclear cloud physics in the convection processes and the less accurate humidity data. These preliminary results are consistent with the results of previous studies which show that the feature of the seasonal warming in the upper troposphere and the corresponding processes are part of key processes closely related to the evolution of the summer monsoon over East Asia and India. Key words Monsoon circulation - Hadley circulation - Forced meridional circulation This work was supported by the “ National key programme of China for developing basic science” G 1998040900 part 1, NSFC 49675264 and NSFC 49875021.展开更多
In terms of Kuo-Qian pesigma incorporated coordinate five-level primitive equation spheric band (70°N-30°S)model with the Ural high's effect introduced into it as initial and boundary conditions, study i...In terms of Kuo-Qian pesigma incorporated coordinate five-level primitive equation spheric band (70°N-30°S)model with the Ural high's effect introduced into it as initial and boundary conditions, study is made of the high's influence on Asian summer monsoon circulation and dryness / wetness of eastern China based on case contrast andcontrol experiments. Rusults show that as an excitation source, the blocking high produces a SE-NW stationarywavetrain with its upper-air atnicyclonic divergent circulation oust over a lower-level trough zone) precisely over themiddle to lower reaches of the Changjiang River, enhancing East Asian westerly jet, a situation that contributes toPerturbation growth, causing an additional secondary meridional circulation at the jet entrance, which intensifies theupdraft in the monsoon area. As such, the high's presence and its excited steady wavetrain represent the large-scalekey factors and acting mechanisms for the rainstorm over the Changjiang-Huaihe River catchment in the easternpart of the land.展开更多
In the past decade there has been extensive research into tropical intraseasonal variability, one of the major components of the low frequency variability of the general atmospheric circulation. This paper briefly rev...In the past decade there has been extensive research into tropical intraseasonal variability, one of the major components of the low frequency variability of the general atmospheric circulation. This paper briefly reviews the state-of-the-art in this research area: the nature of the Madden-Julian Oscillation, its relation to monsoonal and extratropical circulations, and the current theoretical understandings.展开更多
In this paper, Indian monsoon of 1980 and 1981 is analysed based on the seasonal and half-month averaged data of 850 hPa of ECMWF analysis. The results show that Indian monsoon is related to Somali jet, the low-latitu...In this paper, Indian monsoon of 1980 and 1981 is analysed based on the seasonal and half-month averaged data of 850 hPa of ECMWF analysis. The results show that Indian monsoon is related to Somali jet, the low-latitude easterlies and the mid-latitude westerlies over southern Indian Ocean, which are associated with the stationary wave of Southern Hemisphere. The forces affecting on the low-level flow are diagnosed, which display the relationship between Indian monsoon and the associated low-level flow.展开更多
In this paper, the relation between Asian summer monsoon circulation and sea surface temperature anomalies over equatorial central-eastern Pacific is investigated by using a global spectral model. This model has nine ...In this paper, the relation between Asian summer monsoon circulation and sea surface temperature anomalies over equatorial central-eastern Pacific is investigated by using a global spectral model. This model has nine layers in the vertical and the model variables are represented in the horizontal as truncated expansions of the surface spherical harmonics with rhomboidal truncation at wave number 15. The model involves comparatively complete physical processes and parameterizations with mountains.Using the above model, two experimental schemes are designed, namely control case and anomalous sea surface temperature case. The above two schemes are respectively integrated for forty days and the simulated results are obtained from the last 30-day averaged simulations.The simulations show that positive SST anomalies over equatorial central-eastern Pacific weakens Indian monsoon circulation,decreases precipitation in Indian sub-continent whereas it intensifies East Asian monsoon circulation and increases precipitation in East Asian area. All these results reflect the characteristics of Asian summer monsoon during the El Nino period. In this paper, SST anomalies over equatorial central-eastern Pacific have a direct influence on the intensity and position of subtropical high via the wave train over Northern Hemisphere, which is similar to that suggested by Nitta(1987) and the wave train over Southern Hemisphere has an influence on the intensity of Muscarene high and Australia high resulting in affecting cross equatorial flow. As a result, atmospheric interior heat sources and sinks are redistributed because of the change of cross equatorial flow. And the response of atmosphere to the new heat source and sink has a significant influence on Asian summer monsoon.展开更多
The wavelet analysis is performed of the mid- and low-latitude circulation index at 850 hPa over East Asia, the East Asian monsoon index and the precipitation over the middle and lower reaches of the Yangtze River dur...The wavelet analysis is performed of the mid- and low-latitude circulation index at 850 hPa over East Asia, the East Asian monsoon index and the precipitation over the middle and lower reaches of the Yangtze River during 1998 South China Sea Monsoon Experiment (SCSMEX) from May to August. Analysis shows that distinct 30-60 day low-frequency oscillation (LFO) exists in all of the above elements during the experiment period. Analysis of low-frequency wind field at 850 hPa from May to August with 5 days interval is performed in this Paper. Analysis results reveal that: (l ) A low-frequency monsoon circulation system over East Asia, characterized by distinct 30-60 day low-frequency oscillation, exists over 100°-150°E of East Asian area from the middle and eastern parts of China continent and the South China Sea to the western Pacific in both the Northern and Southern Hemisphere. The activity of East Asian monsoon is mainly affected by the low-frequency systems in it; (2) All of the tropical monsoon onset over the South China Sea in the fifth pentad of May, the beginning of the Meiyu period and heavy rainfall over the middle and lower reaches of the Yangtze River in mid-June and the heavy rainfall after mid-July are related to the activity of low-frequency cyclone belt over the region, whereas the torrential rainfall over the upper reaches of the Yangtze River in August is associated with the westward propagation of low-frequency anticyclone into the mainland; (3) There are two sources of low-frequency oscillation system over East Asia during SCSMEX. i.e. the equatorial South China Sea (SCS) and mid-high latitudes of the middle Pacific in the Northern Hemisphere. The low-frequency system over SCS propagates northward while that in mid-high latitudes mainly propagates from northeast to southwest. Both of the heavy rainfall over the middle and lower reaches of the Yangtze River in June and July are associated with the northward propagation of the above-mentioned SCS low-frequency systems from the tropical region and the southwestward propagation from mid-high latitudes respectively and their convergence in the middle and lower reaches of the Yangtze River; (4) There are two activities of low-frequency cyclone and anticyclone belt each in the East Asian monsoon system during May to August. However the activity of these low-frequency circulation systems is not clearly relevant to the low-frequency circulation system in the indian monsoon system. This means that the low-frequency circulation systems in indian monsoon and East Asian monsoon are independent of each other. The concept previously put forward by Chinese scholars that the East Asian monsoon circulation system (EAMCS) is relatively independent monsoon circulation system is testified once more in the summer 1998.展开更多
This study aims to investigate the recent drought in southwestern China and its association with environmental changes in moisture transport (MT) and atmospheric circulation. Climatic Research Unit grid data, in sit...This study aims to investigate the recent drought in southwestern China and its association with environmental changes in moisture transport (MT) and atmospheric circulation. Climatic Research Unit grid data, in situ observations in China, and ERA-interim reanalysis are used to study the characteristics of the drought and the associated mechanism. Recent precipitation trends show a pattern of "Northern wetting and Southern drying", similar to the anti-phase of the climate pattern prevailing during 1980--2000 in China's Mainland; southwestern China incurred a severe drought during 2009-20l 3. Wavelet analysis reveals that the drought coincides with a warm-dry phase of temperature and precipitation on a period of about 20 years and beyond 100 years, where contributions account for 43% and 57% of the deficiency of the precipitation, averaged for 2003-2012, respectively. A further investigation reveals that the drought results chiefly from the decline of the southwestern monsoon MT toward southwestern China, in addition to mid-latitude circulation changes, which leads to more blockings near the Ural Mountains and the Sea of Okhotsk in the rainy season and negative anomalies around Lake Baikal and northeast China in the dry season. These anomalies are likely to be correlated with global sea surface temperature changes and need to be studied further.展开更多
Using surface and NCEP reanalysis data along with radar and satellite images, diagnosis has been carried out to probe the reasons for the very heavy rainfall that occurred in Islāmābad-Rāwal...Using surface and NCEP reanalysis data along with radar and satellite images, diagnosis has been carried out to probe the reasons for the very heavy rainfall that occurred in Islāmābad-Rāwalpindi on 23 July 2001. It has been revealed that the sudden evolution of this meso-scale severe weather system was the direct result of strong surface convection in moist and unstable lower layers of the atmosphere. The subsequent rapid development was the combined effect of the presence of the mid latitude westerly’s trough in the north and moisture feeding through monsoon flow along the Himalayas and also the direct south-westerly current from the Arabian Sea. After the westward shifting of the Sub-Tropical High (STH) from the north of India, the strong divergence zone on its eastern edge contributed positively to the development of upward motion. Initially the convective systems moved towards the south and then southeastward following the steering current in the middle troposphere. Based on these analyses, the physical model of the sudden record heavy rainfall has been proposed and a comparison between the heavy rainfall in this case and one in China has been conducted.展开更多
The study has shown that the shear component of the vertical integrated kinetic energy(Ks)over the box(40oE-100oE,0-20oN)can be used to measure the intensity of the South Asian summer monsoon(SASM).Based on its value ...The study has shown that the shear component of the vertical integrated kinetic energy(Ks)over the box(40oE-100oE,0-20oN)can be used to measure the intensity of the South Asian summer monsoon(SASM).Based on its value averaged between June and August,the SASM can be divided into strong and weak monsoon episodes.Between1958 and 2018,there existed 16(16)strong(weak)monsoon episodes.Based on the calendar year,the relationship between the SASM and ENSO episodes can be grouped into six patterns:weak monsoon-El Ni?o(WM-EN),normal monsoon-El Ni?o(NM-EN),weak monsoon-non ENSO(WM-NE),strong monsoon-La Ni?a(SM-LN),normal monsoon-La Ni?a(NM-LN)and strong monsoon-non ENSO(SM-NE).Previous studies suggest that the WM-EN and SM-LN patterns reflect the correlated relationship between the SASM and El Ni?o/Southern Oscillation(ENSO)events.Therefore,we name these two strongly coupled categories WM-EN and SM-LN as the resonance effect.Two important circulations,i.e.,Walker circulation(WC)and zonal Asian monsoon circulation(MC),in the vertical plane are found to be not always correlated.The MC is controlled by thermal gradients between the Asian landmass and the tropical Indian Ocean,while the WC associated with ENSO events is primarily the east-west thermal gradient between the tropical South Pacific and the tropical Indian Ocean.Furthermore,the gradient directions caused by different surface thermal conditions are different.The main factor for the resonance effect is the phenomenon that the symbols of SSTA in the tropical Indian Ocean and the equatorial eastern Pacific are the same,but are opposite to that of the SSTA near the maritime continent.展开更多
The Asian summer monsoon(ASM)is the most energetic circulation system.Projecting its future change is critical for the mitigation and adaptation of billions of people living in the region.There are two important compo...The Asian summer monsoon(ASM)is the most energetic circulation system.Projecting its future change is critical for the mitigation and adaptation of billions of people living in the region.There are two important components within the ASM:South Asian summer monsoon(SASM)and East Asian summer monsoon(EASM).Although current state-of-the-art climate models projected increased precipitation in both SASM and EASM due to the increase of atmospheric moisture,their circulation changes differ markedlyÐA robust strengthening(weakening)of EASM(SASM)circulation was projected.By separating fast and slow processes in response to increased CO_(2) radiative forcing,we demonstrate that EASM circulation strengthening is attributed to the fast land warming and associated Tibetan Plateau thermal forcing.In contrast,SASM circulation weakening is primarily attributed to an El Niño-like oceanic warming pattern in the tropical Pacific and associated suppressed precipitation over the Maritime Continent.展开更多
Seasonal variation features of aerosol optical depth (AOD) over East China and India in association with the Asian monsoon system are investigated, based on the latest AOD data derived from the Moderate Resolution I...Seasonal variation features of aerosol optical depth (AOD) over East China and India in association with the Asian monsoon system are investigated, based on the latest AOD data derived from the Moderate Resolution Imaging Spec-troradiometer (MODIS) aboard the Terra satellite, the NCEP Final (FNL) Operational Global Analysis data, the Cli-mate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) data, and the NCEP/NCAR reanalysis data from March 2000 to February 2017. The results indicate that AOD in East China is significantly larger than that in India, especially in spring. The seasonal mean AOD in East China is high in both spring and summer but low in fall and winter. However, the AOD averaged over India is highest in summer and lower in spring, fall, and winter. Ana-lysis reveals that AOD is more closely related to changes in surface wind speed in East China, while no obvious rela-tion is found between precipitation and the AOD distribution on the seasonal timescale. As aerosols are mainly dis-tributed in the atmospheric boundary layer (ABL), the stability of the ABL represented by Richardson number (Ri) is closely correlated with spatial distribution of AOD. The upper and lower tropospheric circulation patterns signific-antly differ between East China and India, resulting in different effects on the AOD. The effect of advection associ-ated with lower tropospheric circulation on the AOD and the influence of convergence and divergence on the AOD distribution play different roles in maintaining the AOD in East China and India. These results improve our under-standing of the mechanism responsible for and differences among the aerosol changes in East China and India.展开更多
In terms of the expansion by extended empirical orthogonal function (EEOF) with data of ECMWF WMO and of outgoing longwave radiation(OLR) furnished by the NOAA polar-orbiting satellite,a study is made of November 1981...In terms of the expansion by extended empirical orthogonal function (EEOF) with data of ECMWF WMO and of outgoing longwave radiation(OLR) furnished by the NOAA polar-orbiting satellite,a study is made of November 1981 to March 1982 low-frequency (30--60 day)summer monsoon activity in the Indone- sian-North Australian zone (INAZ) together with its relation to atmospheric circulations in the Northern and Southern Hemispheres. Results show that at 850 hPa the southward blowing low-frequency NE(SW)wind from the eastern Asian coast changes, after crossing the euqator, to summer NW (SE) monsoon in the INAZ, which, when converging with (diverging from) the western-Australian enforced low-frequency SW (NE) wind, brings about strengthened (weakened) convection in the summer monsoon area and its eastward advance, with corresponding low- frequency variation shown in 850 hPa geopotential height. These outcomes are similar to those from the study of non-filtered actual observations, leading to the conclusion that the component of low-frequency variation illustrates major features characteristic of the variation in the tropical circulation.展开更多
Analysis is performed of low-frequency oscillation (LFO) and its relation to monsoon by means of ECMWF nu- merical prediction data in the period 1 June to 30 September 1984,indicating that remarkable local LFO exists ...Analysis is performed of low-frequency oscillation (LFO) and its relation to monsoon by means of ECMWF nu- merical prediction data in the period 1 June to 30 September 1984,indicating that remarkable local LFO exists in the vertical meridional and equatorial zonal circulations.And preliminary discussion is made of the origin of the LFO of the East-Asian summer monsoon meridional circulation in the LFO of the mid and upper troposphere vertical motion around 30°S.The LFOs in the meridional circulations of both hemispheres are linked together by the LFO of the meridional circulation.Finally the possible relation between the tropical monsoon LFO and Meiyu (plum rain).展开更多
Important progresses of the study of the general circulation and monsoons in East Asia,which have been made since the pioneering work“Monsoons in Southeast Asia and rainfall amount in China”by Prof.Zhu Kezhen,are ex...Important progresses of the study of the general circulation and monsoons in East Asia,which have been made since the pioneering work“Monsoons in Southeast Asia and rainfall amount in China”by Prof.Zhu Kezhen,are extensively reviewed in memory of this founder of modern meteorology in China.The first part has addressed the bimodality of the general circulation and the abrupt seasonal change.The second part has dealt with the role of the continent-ocean contrast and topography in the dynamic and thermal processes of mon- soon development,including winter and summer monsoons,and associated heat sources and sinks.The third part has discussed the monsoonal precipitation,with a special emphasis on the mesoscale disturbance,low-level jet and interannual variability of Meiyu(plum rains).展开更多
In this paper,a primitive equation linear wave model is used to examine the effects of three-dimen- sional structure of heating field on the behavior of stationary planetary waves in summer and to compare the roles of...In this paper,a primitive equation linear wave model is used to examine the effects of three-dimen- sional structure of heating field on the behavior of stationary planetary waves in summer and to compare the roles of different heating functions for the formation and maintenance of summer monsoon circulation in Asia.It is shown that the aloft heating connected with the latent heating,especially the deep condensation heating associated with the cumulus convection in low latitudes,plays a crucial part in the Asian summer mon- soon and the structures of planetary wave responses are quite sensitive to the vertical distribution of heating.展开更多
The impact of the boreal summer intraseasonal oscillation (BSISO) on extreme hot and cool events was investig-ated, by analyzing the observed and reanalysis data for the period from 1983 to 2012. It is found that th...The impact of the boreal summer intraseasonal oscillation (BSISO) on extreme hot and cool events was investig-ated, by analyzing the observed and reanalysis data for the period from 1983 to 2012. It is found that the frequency of the extreme events in middle and high latitudes is significantly modulated by the BSISO convection in the tropics, with a 3-9-day lag. During phases 1 and 2 when the BSISO positive rainfall anomaly is primarily located over a northwest-southeast oriented belt extending from India to Maritime Continent and a negative rainfall anomaly ap- pears in western North Pacific, the frequency of extreme hot events is 40% more than the frequency of non-extreme hot events. Most noticeable increase appears in midlatitude North Pacific (north of 40°N) and higher-latitude polar region. Two physical mechanisms are primarily responsible for the change of the extreme frequency. First, an upper-tropo-spheric Rossby wave train (due to the wave energy propagation) is generated in response to a negative heating anom-aly over tropical western North Pacific in phases 1 and 2. This wave train consists of a strong high pressure anomaly center northeast of Japan, a weak low pressure anomaly center over Alaska, and a strong high pressure anomaly cen-ter over the western coast of United States. Easterly anomalies to the south of the two strong midlatitude high pres-sure centers weaken the climatological subtropical jet along 40°N, which is accompanied by anomalous subsidence and warming in North Pacific north of 40°N. Second, an enhanced monsoonal heating over South Asia and East Asia sets up a transverse monsoonal overturning circulation, with large-scale ascending (descending) anomalies over trop-ical Indian (Pacific) Ocean. Both the processes favor more frequent extreme hot events in higher-latitude Northern Hemisphere. An anomalous atmospheric general circulation model is used to confirm the tropical heating effect.展开更多
Based on numerical simulation, this study explored the characteristics and interactions of surface sensible heating and atmospheric latent heating over the main part of the Tibetan Plateau, i.e., terrain at elevations...Based on numerical simulation, this study explored the characteristics and interactions of surface sensible heating and atmospheric latent heating over the main part of the Tibetan Plateau, i.e., terrain at elevations >2 km in summer. The impacts of these two types of heating on local vertical motion and monsoonal meridional circulation were compared. Theoretical analysis and numerical experimentation demonstrated that by changing the configuration of the upper-tropospheric air temperature and circulation, the two types of heating could generate both minimum absolute vorticity and abnormal potential vorticity forcing near the tropopause, enhance the meridional circulation of the Asian summer monsoon, and produce an eastward-propagating Rossby wave train within the mid-latitude westerly flow. Consequently, the manifestations of these features were shown to influence the circulation of the Northern Hemisphere.展开更多
Based on the Scripps/NODC Joint Environmental Data Analysis Center's data of heat content in upper ocean (1955--1998) and NCEP/NCAR reanalysis data,the relationship between the heat content anomalies in the warm p...Based on the Scripps/NODC Joint Environmental Data Analysis Center's data of heat content in upper ocean (1955--1998) and NCEP/NCAR reanalysis data,the relationship between the heat content anomalies in the warm pool area of the western Pacific (WP) and onset of South China Sea summer monsoon (SCSM) is examined.The results show that the warm pool area (WP) is the place where heat content in the tropical upper layer changes with maximum range and which is most obviously influential to South China Sea summer monsoon.Onset of SCSM is very closely related to the heat content anomaly during the previous period (previous winter and spring) of the WP so that the heat content of March to April in the WP area is a very good predictor for onset of SCSM.When the heat content of the WP area is positive,convection center will be located in the South China Sea-western Pacific with strong convection,a positive anomaly of monsoon circulation and Walker circulation will take place and the subtropical high will be weaker and farther east. Positive anomalous monsoon circulation and Walker circulation will be favorable for westerly and southwesterly flows-SCSM breaks off earlier than normal.Otherwise,SCSM comes later than usual.Large-scale anomalous change of monsoon circulation and Walker circulation seems one of the important mechanisms to influence SCSM.展开更多
Using the CCM3/NCAR, a series of numerical experiments are designed to explore the effect of ocean-land interlaced distributions of Africa-Arabian Sea-India Peninsula-Bay of Bengal (BOB)-Indo-China Peninsula- South ...Using the CCM3/NCAR, a series of numerical experiments are designed to explore the effect of ocean-land interlaced distributions of Africa-Arabian Sea-India Peninsula-Bay of Bengal (BOB)-Indo-China Peninsula- South China Sea on the formation of the Asian summer monsoon circulation (ASMC). The results show that the thermal difference between African or Indian Subcontinent and nearby areas including the Indian Ocean, Arabian Sea, and part of BOB is the primary mechanism that maintains the Indian monsoon circulation. In the experiment getting rid of these two continents, the Indian monsoon system (IMS) members, i.e., the Somali cross-equatorial jet (40°E) and the southwesterly monsoon over the Arabian Sea and BOB, almost disappear. Moreover, the Hadley circulation weakens dominantly. It also proves that Africa has greater effect than Indian Subcontinent on the IMS. However, the existence of Indo-China Peninsula and Australia strengthens the East Asian monsoon system (EAMS). The thermal contrast between Indo-China Peninsula and SCS, Australia and western Pacific Ocean plays an important role in the formation of the tropical monsoon to the south of the EAMS. When the Indo-China Peninsula is masked in the experiment, the cross-equatorial flow (105°E and 125°E) vanishes, so does the southwesterly monsoon usually found over East Asia, and EAMS is enfeebled significantly. In addition, the impacts of these thermal contrasts on the distribution of the summer precipitation and surface temperature are investigated.展开更多
基金the key project of Chinese Academy of Sciences under ContractKZCX2-203 and the key program of the National Natural Science Fou
文摘The transition of the global atmospheric circulation in the end of 1970's can clearly be detected in the atmospheric temperature, wind velocity, and so on. Wavelet analysis reveals that the temporal scale of this change is larger than 20 years. Studies in this work indicate that the trend of the transition over the mid-latitude Asia is opposite to that of global average for some variables at the middle troposphere. Another finding of this research is that the African-Asian monsoon circulation is weaker and the trade wind over the tropical eastern Pacific is weaker as well after this transition. Such a signal may be found in the summer precipitation over China as well. Key words Asian monsoon circulation - Weakening - Transition This research was supported by the key project of Chinese Academy of Sciences under Contract KZCX2-203 and the key program of the National Natural Science Foundation of China under Contract 49894170.
基金This work was supported by the" National key programme of China for developing basic science" !G 1998040900 part 1, NSFC 496752
文摘Two numerical simulations of forced local Hadley circulation are carried out based on a linear diagnostic equation to provide an insight into the mechanisms of monsoon evolution in different monsoon regions. One simulation is for the zonal mean Hadley circulation over East Asia (from 95°E to 122.5°E), another over India (from 70°E to 85°E). With the NCEP/ NCAR re-analysis data re—processed by Chinese Academy of Science in Beijing, the former simulation displays a dominant anti—Hadley circulation pattern over East Asia at 1200 UTC May 1, 1994. The simulated circulation pattern is consistent well enough with the circulation pattern plotted directly from the data for lack of the radiation information at each level. Although the simulation over India is not as good as that over East Asia, a dominant Hadley circulation pattern is obvious as data show. Further analysis shows that the defective simulation over India is due to the presence of statically unstable condition at some grid points in the lower troposphere. This circumstance slightly violates the hydrodynamic stability criterion required by the elliptic diagnostic equation for the forced circulation. Since the simulations are reliable enough compared with the given data, the linear equation facilitates a systematic assessment of relative importance of each internally forcing process. The assessment shows that among the internal processes, the horizontal temperature advections account obviously for the Hadley (anti—Hadley) circulation over India (East Asia) at 1200 UTC May 1, 1994 in addition to the process associated with the latent heat releasing. The calculation of latent heat energy is a little bit unreliable due to the unclear cloud physics in the convection processes and the less accurate humidity data. These preliminary results are consistent with the results of previous studies which show that the feature of the seasonal warming in the upper troposphere and the corresponding processes are part of key processes closely related to the evolution of the summer monsoon over East Asia and India. Key words Monsoon circulation - Hadley circulation - Forced meridional circulation This work was supported by the “ National key programme of China for developing basic science” G 1998040900 part 1, NSFC 49675264 and NSFC 49875021.
文摘In terms of Kuo-Qian pesigma incorporated coordinate five-level primitive equation spheric band (70°N-30°S)model with the Ural high's effect introduced into it as initial and boundary conditions, study is made of the high's influence on Asian summer monsoon circulation and dryness / wetness of eastern China based on case contrast andcontrol experiments. Rusults show that as an excitation source, the blocking high produces a SE-NW stationarywavetrain with its upper-air atnicyclonic divergent circulation oust over a lower-level trough zone) precisely over themiddle to lower reaches of the Changjiang River, enhancing East Asian westerly jet, a situation that contributes toPerturbation growth, causing an additional secondary meridional circulation at the jet entrance, which intensifies theupdraft in the monsoon area. As such, the high's presence and its excited steady wavetrain represent the large-scalekey factors and acting mechanisms for the rainstorm over the Changjiang-Huaihe River catchment in the easternpart of the land.
文摘In the past decade there has been extensive research into tropical intraseasonal variability, one of the major components of the low frequency variability of the general atmospheric circulation. This paper briefly reviews the state-of-the-art in this research area: the nature of the Madden-Julian Oscillation, its relation to monsoonal and extratropical circulations, and the current theoretical understandings.
文摘In this paper, Indian monsoon of 1980 and 1981 is analysed based on the seasonal and half-month averaged data of 850 hPa of ECMWF analysis. The results show that Indian monsoon is related to Somali jet, the low-latitude easterlies and the mid-latitude westerlies over southern Indian Ocean, which are associated with the stationary wave of Southern Hemisphere. The forces affecting on the low-level flow are diagnosed, which display the relationship between Indian monsoon and the associated low-level flow.
文摘In this paper, the relation between Asian summer monsoon circulation and sea surface temperature anomalies over equatorial central-eastern Pacific is investigated by using a global spectral model. This model has nine layers in the vertical and the model variables are represented in the horizontal as truncated expansions of the surface spherical harmonics with rhomboidal truncation at wave number 15. The model involves comparatively complete physical processes and parameterizations with mountains.Using the above model, two experimental schemes are designed, namely control case and anomalous sea surface temperature case. The above two schemes are respectively integrated for forty days and the simulated results are obtained from the last 30-day averaged simulations.The simulations show that positive SST anomalies over equatorial central-eastern Pacific weakens Indian monsoon circulation,decreases precipitation in Indian sub-continent whereas it intensifies East Asian monsoon circulation and increases precipitation in East Asian area. All these results reflect the characteristics of Asian summer monsoon during the El Nino period. In this paper, SST anomalies over equatorial central-eastern Pacific have a direct influence on the intensity and position of subtropical high via the wave train over Northern Hemisphere, which is similar to that suggested by Nitta(1987) and the wave train over Southern Hemisphere has an influence on the intensity of Muscarene high and Australia high resulting in affecting cross equatorial flow. As a result, atmospheric interior heat sources and sinks are redistributed because of the change of cross equatorial flow. And the response of atmosphere to the new heat source and sink has a significant influence on Asian summer monsoon.
基金the key project A of the State Ministry of ScienceTechnology " South China Sea Monsoon Experiment" and the fruit of it.
文摘The wavelet analysis is performed of the mid- and low-latitude circulation index at 850 hPa over East Asia, the East Asian monsoon index and the precipitation over the middle and lower reaches of the Yangtze River during 1998 South China Sea Monsoon Experiment (SCSMEX) from May to August. Analysis shows that distinct 30-60 day low-frequency oscillation (LFO) exists in all of the above elements during the experiment period. Analysis of low-frequency wind field at 850 hPa from May to August with 5 days interval is performed in this Paper. Analysis results reveal that: (l ) A low-frequency monsoon circulation system over East Asia, characterized by distinct 30-60 day low-frequency oscillation, exists over 100°-150°E of East Asian area from the middle and eastern parts of China continent and the South China Sea to the western Pacific in both the Northern and Southern Hemisphere. The activity of East Asian monsoon is mainly affected by the low-frequency systems in it; (2) All of the tropical monsoon onset over the South China Sea in the fifth pentad of May, the beginning of the Meiyu period and heavy rainfall over the middle and lower reaches of the Yangtze River in mid-June and the heavy rainfall after mid-July are related to the activity of low-frequency cyclone belt over the region, whereas the torrential rainfall over the upper reaches of the Yangtze River in August is associated with the westward propagation of low-frequency anticyclone into the mainland; (3) There are two sources of low-frequency oscillation system over East Asia during SCSMEX. i.e. the equatorial South China Sea (SCS) and mid-high latitudes of the middle Pacific in the Northern Hemisphere. The low-frequency system over SCS propagates northward while that in mid-high latitudes mainly propagates from northeast to southwest. Both of the heavy rainfall over the middle and lower reaches of the Yangtze River in June and July are associated with the northward propagation of the above-mentioned SCS low-frequency systems from the tropical region and the southwestward propagation from mid-high latitudes respectively and their convergence in the middle and lower reaches of the Yangtze River; (4) There are two activities of low-frequency cyclone and anticyclone belt each in the East Asian monsoon system during May to August. However the activity of these low-frequency circulation systems is not clearly relevant to the low-frequency circulation system in the indian monsoon system. This means that the low-frequency circulation systems in indian monsoon and East Asian monsoon are independent of each other. The concept previously put forward by Chinese scholars that the East Asian monsoon circulation system (EAMCS) is relatively independent monsoon circulation system is testified once more in the summer 1998.
基金Project supported by the National Basic Research and Development Program of China(Grant No.2013CB430201)the National Natural Science Foundation of China(Grant Nos.41075058 and 41475075)the China Meteorological Administration Special Public Welfare Research Fund(Grant No.GYHY201106016)
文摘This study aims to investigate the recent drought in southwestern China and its association with environmental changes in moisture transport (MT) and atmospheric circulation. Climatic Research Unit grid data, in situ observations in China, and ERA-interim reanalysis are used to study the characteristics of the drought and the associated mechanism. Recent precipitation trends show a pattern of "Northern wetting and Southern drying", similar to the anti-phase of the climate pattern prevailing during 1980--2000 in China's Mainland; southwestern China incurred a severe drought during 2009-20l 3. Wavelet analysis reveals that the drought coincides with a warm-dry phase of temperature and precipitation on a period of about 20 years and beyond 100 years, where contributions account for 43% and 57% of the deficiency of the precipitation, averaged for 2003-2012, respectively. A further investigation reveals that the drought results chiefly from the decline of the southwestern monsoon MT toward southwestern China, in addition to mid-latitude circulation changes, which leads to more blockings near the Ural Mountains and the Sea of Okhotsk in the rainy season and negative anomalies around Lake Baikal and northeast China in the dry season. These anomalies are likely to be correlated with global sea surface temperature changes and need to be studied further.
文摘Using surface and NCEP reanalysis data along with radar and satellite images, diagnosis has been carried out to probe the reasons for the very heavy rainfall that occurred in Islāmābad-Rāwalpindi on 23 July 2001. It has been revealed that the sudden evolution of this meso-scale severe weather system was the direct result of strong surface convection in moist and unstable lower layers of the atmosphere. The subsequent rapid development was the combined effect of the presence of the mid latitude westerly’s trough in the north and moisture feeding through monsoon flow along the Himalayas and also the direct south-westerly current from the Arabian Sea. After the westward shifting of the Sub-Tropical High (STH) from the north of India, the strong divergence zone on its eastern edge contributed positively to the development of upward motion. Initially the convective systems moved towards the south and then southeastward following the steering current in the middle troposphere. Based on these analyses, the physical model of the sudden record heavy rainfall has been proposed and a comparison between the heavy rainfall in this case and one in China has been conducted.
基金Strategic Priority Research Program of the Chinese Academy of Sciences(XDA20060503)Fund of Southern Marine Science and Engineering Guangdong Laboratory(ZJW-2019-08)+2 种基金National Key R&D Program of China(2017YFC1501802,2018YFA0605604)Project of Enhancing School with Innovation of Guangdong Ocean University(230419053)Projects(Platforms)for Construction of Topranking Disciplines of Guangdong Ocean University(231419022)
文摘The study has shown that the shear component of the vertical integrated kinetic energy(Ks)over the box(40oE-100oE,0-20oN)can be used to measure the intensity of the South Asian summer monsoon(SASM).Based on its value averaged between June and August,the SASM can be divided into strong and weak monsoon episodes.Between1958 and 2018,there existed 16(16)strong(weak)monsoon episodes.Based on the calendar year,the relationship between the SASM and ENSO episodes can be grouped into six patterns:weak monsoon-El Ni?o(WM-EN),normal monsoon-El Ni?o(NM-EN),weak monsoon-non ENSO(WM-NE),strong monsoon-La Ni?a(SM-LN),normal monsoon-La Ni?a(NM-LN)and strong monsoon-non ENSO(SM-NE).Previous studies suggest that the WM-EN and SM-LN patterns reflect the correlated relationship between the SASM and El Ni?o/Southern Oscillation(ENSO)events.Therefore,we name these two strongly coupled categories WM-EN and SM-LN as the resonance effect.Two important circulations,i.e.,Walker circulation(WC)and zonal Asian monsoon circulation(MC),in the vertical plane are found to be not always correlated.The MC is controlled by thermal gradients between the Asian landmass and the tropical Indian Ocean,while the WC associated with ENSO events is primarily the east-west thermal gradient between the tropical South Pacific and the tropical Indian Ocean.Furthermore,the gradient directions caused by different surface thermal conditions are different.The main factor for the resonance effect is the phenomenon that the symbols of SSTA in the tropical Indian Ocean and the equatorial eastern Pacific are the same,but are opposite to that of the SSTA near the maritime continent.
基金supported by the National Natural Science Foundation of China (42088101)the National Key Research & Development Program of China (2017YFA0603802)US National Science Foundation (AGS-2006553)
文摘The Asian summer monsoon(ASM)is the most energetic circulation system.Projecting its future change is critical for the mitigation and adaptation of billions of people living in the region.There are two important components within the ASM:South Asian summer monsoon(SASM)and East Asian summer monsoon(EASM).Although current state-of-the-art climate models projected increased precipitation in both SASM and EASM due to the increase of atmospheric moisture,their circulation changes differ markedlyÐA robust strengthening(weakening)of EASM(SASM)circulation was projected.By separating fast and slow processes in response to increased CO_(2) radiative forcing,we demonstrate that EASM circulation strengthening is attributed to the fast land warming and associated Tibetan Plateau thermal forcing.In contrast,SASM circulation weakening is primarily attributed to an El Niño-like oceanic warming pattern in the tropical Pacific and associated suppressed precipitation over the Maritime Continent.
基金Supported by the National(Key)Basic Research and Development(973)Program of China(2011CB403406)Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions
文摘Seasonal variation features of aerosol optical depth (AOD) over East China and India in association with the Asian monsoon system are investigated, based on the latest AOD data derived from the Moderate Resolution Imaging Spec-troradiometer (MODIS) aboard the Terra satellite, the NCEP Final (FNL) Operational Global Analysis data, the Cli-mate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) data, and the NCEP/NCAR reanalysis data from March 2000 to February 2017. The results indicate that AOD in East China is significantly larger than that in India, especially in spring. The seasonal mean AOD in East China is high in both spring and summer but low in fall and winter. However, the AOD averaged over India is highest in summer and lower in spring, fall, and winter. Ana-lysis reveals that AOD is more closely related to changes in surface wind speed in East China, while no obvious rela-tion is found between precipitation and the AOD distribution on the seasonal timescale. As aerosols are mainly dis-tributed in the atmospheric boundary layer (ABL), the stability of the ABL represented by Richardson number (Ri) is closely correlated with spatial distribution of AOD. The upper and lower tropospheric circulation patterns signific-antly differ between East China and India, resulting in different effects on the AOD. The effect of advection associ-ated with lower tropospheric circulation on the AOD and the influence of convergence and divergence on the AOD distribution play different roles in maintaining the AOD in East China and India. These results improve our under-standing of the mechanism responsible for and differences among the aerosol changes in East China and India.
基金The study is jointly supported by National Natural Science Foundation of Chinathe State Meteorological Administration Monsoon Research Funds.
文摘In terms of the expansion by extended empirical orthogonal function (EEOF) with data of ECMWF WMO and of outgoing longwave radiation(OLR) furnished by the NOAA polar-orbiting satellite,a study is made of November 1981 to March 1982 low-frequency (30--60 day)summer monsoon activity in the Indone- sian-North Australian zone (INAZ) together with its relation to atmospheric circulations in the Northern and Southern Hemispheres. Results show that at 850 hPa the southward blowing low-frequency NE(SW)wind from the eastern Asian coast changes, after crossing the euqator, to summer NW (SE) monsoon in the INAZ, which, when converging with (diverging from) the western-Australian enforced low-frequency SW (NE) wind, brings about strengthened (weakened) convection in the summer monsoon area and its eastward advance, with corresponding low- frequency variation shown in 850 hPa geopotential height. These outcomes are similar to those from the study of non-filtered actual observations, leading to the conclusion that the component of low-frequency variation illustrates major features characteristic of the variation in the tropical circulation.
文摘Analysis is performed of low-frequency oscillation (LFO) and its relation to monsoon by means of ECMWF nu- merical prediction data in the period 1 June to 30 September 1984,indicating that remarkable local LFO exists in the vertical meridional and equatorial zonal circulations.And preliminary discussion is made of the origin of the LFO of the East-Asian summer monsoon meridional circulation in the LFO of the mid and upper troposphere vertical motion around 30°S.The LFOs in the meridional circulations of both hemispheres are linked together by the LFO of the meridional circulation.Finally the possible relation between the tropical monsoon LFO and Meiyu (plum rain).
文摘Important progresses of the study of the general circulation and monsoons in East Asia,which have been made since the pioneering work“Monsoons in Southeast Asia and rainfall amount in China”by Prof.Zhu Kezhen,are extensively reviewed in memory of this founder of modern meteorology in China.The first part has addressed the bimodality of the general circulation and the abrupt seasonal change.The second part has dealt with the role of the continent-ocean contrast and topography in the dynamic and thermal processes of mon- soon development,including winter and summer monsoons,and associated heat sources and sinks.The third part has discussed the monsoonal precipitation,with a special emphasis on the mesoscale disturbance,low-level jet and interannual variability of Meiyu(plum rains).
文摘In this paper,a primitive equation linear wave model is used to examine the effects of three-dimen- sional structure of heating field on the behavior of stationary planetary waves in summer and to compare the roles of different heating functions for the formation and maintenance of summer monsoon circulation in Asia.It is shown that the aloft heating connected with the latent heating,especially the deep condensation heating associated with the cumulus convection in low latitudes,plays a crucial part in the Asian summer mon- soon and the structures of planetary wave responses are quite sensitive to the vertical distribution of heating.
基金Supported by the National(Key)Basic Research and Development(973)Program of China(2017YFA0603802 and 2015CB453200)National Natural Science Foundation of China(41630423,41475084,41575043,and 41375095)+6 种基金US National Science Foundation(AGS-1643297)Jiangsu Province Projects of China(BK20150062 and R2014SCT001)US National Research Council(N00173-16-1-G906)China Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)SOEST contribution number 10418IPRC contribution number 1330ESMC contribution 216
文摘The impact of the boreal summer intraseasonal oscillation (BSISO) on extreme hot and cool events was investig-ated, by analyzing the observed and reanalysis data for the period from 1983 to 2012. It is found that the frequency of the extreme events in middle and high latitudes is significantly modulated by the BSISO convection in the tropics, with a 3-9-day lag. During phases 1 and 2 when the BSISO positive rainfall anomaly is primarily located over a northwest-southeast oriented belt extending from India to Maritime Continent and a negative rainfall anomaly ap- pears in western North Pacific, the frequency of extreme hot events is 40% more than the frequency of non-extreme hot events. Most noticeable increase appears in midlatitude North Pacific (north of 40°N) and higher-latitude polar region. Two physical mechanisms are primarily responsible for the change of the extreme frequency. First, an upper-tropo-spheric Rossby wave train (due to the wave energy propagation) is generated in response to a negative heating anom-aly over tropical western North Pacific in phases 1 and 2. This wave train consists of a strong high pressure anomaly center northeast of Japan, a weak low pressure anomaly center over Alaska, and a strong high pressure anomaly cen-ter over the western coast of United States. Easterly anomalies to the south of the two strong midlatitude high pres-sure centers weaken the climatological subtropical jet along 40°N, which is accompanied by anomalous subsidence and warming in North Pacific north of 40°N. Second, an enhanced monsoonal heating over South Asia and East Asia sets up a transverse monsoonal overturning circulation, with large-scale ascending (descending) anomalies over trop-ical Indian (Pacific) Ocean. Both the processes favor more frequent extreme hot events in higher-latitude Northern Hemisphere. An anomalous atmospheric general circulation model is used to confirm the tropical heating effect.
基金supported by the Nsyionsl Natural Science Foundation of China (Grant Nos. 41275088, 91437219 & 41328006)the Special Fund for Public Welfare Industry (Meteorology) administered by the Chinese Ministry of Finance and the Ministry of Science and Technology (Grant No. GYHY201406001)
文摘Based on numerical simulation, this study explored the characteristics and interactions of surface sensible heating and atmospheric latent heating over the main part of the Tibetan Plateau, i.e., terrain at elevations >2 km in summer. The impacts of these two types of heating on local vertical motion and monsoonal meridional circulation were compared. Theoretical analysis and numerical experimentation demonstrated that by changing the configuration of the upper-tropospheric air temperature and circulation, the two types of heating could generate both minimum absolute vorticity and abnormal potential vorticity forcing near the tropopause, enhance the meridional circulation of the Asian summer monsoon, and produce an eastward-propagating Rossby wave train within the mid-latitude westerly flow. Consequently, the manifestations of these features were shown to influence the circulation of the Northern Hemisphere.
基金National Climbing Project A:"South China Sea Monsoon Experiments"CAS Innovation Project (No.ZKCX2-SW-210)Project of Natural Sciences Fund of Shandong Province"A study of relationship between warm pool thermal state anomalies and summer rainfall in Shandong"
文摘Based on the Scripps/NODC Joint Environmental Data Analysis Center's data of heat content in upper ocean (1955--1998) and NCEP/NCAR reanalysis data,the relationship between the heat content anomalies in the warm pool area of the western Pacific (WP) and onset of South China Sea summer monsoon (SCSM) is examined.The results show that the warm pool area (WP) is the place where heat content in the tropical upper layer changes with maximum range and which is most obviously influential to South China Sea summer monsoon.Onset of SCSM is very closely related to the heat content anomaly during the previous period (previous winter and spring) of the WP so that the heat content of March to April in the WP area is a very good predictor for onset of SCSM.When the heat content of the WP area is positive,convection center will be located in the South China Sea-western Pacific with strong convection,a positive anomaly of monsoon circulation and Walker circulation will take place and the subtropical high will be weaker and farther east. Positive anomalous monsoon circulation and Walker circulation will be favorable for westerly and southwesterly flows-SCSM breaks off earlier than normal.Otherwise,SCSM comes later than usual.Large-scale anomalous change of monsoon circulation and Walker circulation seems one of the important mechanisms to influence SCSM.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 40375014 and 40475029.
文摘Using the CCM3/NCAR, a series of numerical experiments are designed to explore the effect of ocean-land interlaced distributions of Africa-Arabian Sea-India Peninsula-Bay of Bengal (BOB)-Indo-China Peninsula- South China Sea on the formation of the Asian summer monsoon circulation (ASMC). The results show that the thermal difference between African or Indian Subcontinent and nearby areas including the Indian Ocean, Arabian Sea, and part of BOB is the primary mechanism that maintains the Indian monsoon circulation. In the experiment getting rid of these two continents, the Indian monsoon system (IMS) members, i.e., the Somali cross-equatorial jet (40°E) and the southwesterly monsoon over the Arabian Sea and BOB, almost disappear. Moreover, the Hadley circulation weakens dominantly. It also proves that Africa has greater effect than Indian Subcontinent on the IMS. However, the existence of Indo-China Peninsula and Australia strengthens the East Asian monsoon system (EAMS). The thermal contrast between Indo-China Peninsula and SCS, Australia and western Pacific Ocean plays an important role in the formation of the tropical monsoon to the south of the EAMS. When the Indo-China Peninsula is masked in the experiment, the cross-equatorial flow (105°E and 125°E) vanishes, so does the southwesterly monsoon usually found over East Asia, and EAMS is enfeebled significantly. In addition, the impacts of these thermal contrasts on the distribution of the summer precipitation and surface temperature are investigated.