RSA(Rivest-Shamir-Adleman)public-key cryptosystem is widely used in the information security area such as encryption and digital signature. Based on the modified Montgomery modular multiplication algorithm, a new arch...RSA(Rivest-Shamir-Adleman)public-key cryptosystem is widely used in the information security area such as encryption and digital signature. Based on the modified Montgomery modular multiplication algorithm, a new architecture using CSA(carry save adder)was presented to implement modular multiplication. Compared with the popular modular multiplication algorithms using two CSA, the presented algorithm uses only one CSA, so it can improve the time efficiency of RSA cryptoprocessor and save about half of hardware resources for modular multiplication. With the increase of encryption data size n, the clock cycles for the encryption procedure reduce in (T(n^2),) compared with the modular multiplication algorithms using two CSA.展开更多
A parallel architecture for efficient hardware implementation of Rivest Shamir Adleman(RSA) cryptography is proposed.Residue number system(RNS) is introduced to realize high parallelism,thus all the elements under the...A parallel architecture for efficient hardware implementation of Rivest Shamir Adleman(RSA) cryptography is proposed.Residue number system(RNS) is introduced to realize high parallelism,thus all the elements under the same base are independent of each other and can be computed in parallel.Moreover,a simple and fast base transformation is used to achieve RNS Montgomery modular multiplication algorithm,which facilitates hardware implementation.Based on transport triggered architecture(TTA),the proposed architecture is designed to evaluate the performance and feasibility of the algorithm.With these optimizations,a decryption rate of 106 kbps can be achieved for 1 024-b RSA at the frequency of 100 MHz.展开更多
In order to make the typical Montgomery’s algorithm suitable for implementation on FPGA, a modified version is proposed and then a high-performance systolic linear array architecture is designed for RSA cryptosystem ...In order to make the typical Montgomery’s algorithm suitable for implementation on FPGA, a modified version is proposed and then a high-performance systolic linear array architecture is designed for RSA cryptosystem on the basis of the optimized algorithm. The proposed systolic array architecture has dis- tinctive features, i.e. not only the computation speed is significantly fast but also the hardware overhead is drastically decreased. As a major practical result, the paper shows that it is possible to implement public-key cryptosystem at secure bit lengths on a single commercially available FPGA.展开更多
文摘RSA(Rivest-Shamir-Adleman)public-key cryptosystem is widely used in the information security area such as encryption and digital signature. Based on the modified Montgomery modular multiplication algorithm, a new architecture using CSA(carry save adder)was presented to implement modular multiplication. Compared with the popular modular multiplication algorithms using two CSA, the presented algorithm uses only one CSA, so it can improve the time efficiency of RSA cryptoprocessor and save about half of hardware resources for modular multiplication. With the increase of encryption data size n, the clock cycles for the encryption procedure reduce in (T(n^2),) compared with the modular multiplication algorithms using two CSA.
基金Supported by the Natural Science Foundation of Tianjin (No. 11JCZDJC15800)the National Natural Science Foundation of China(No. 61003306)
文摘A parallel architecture for efficient hardware implementation of Rivest Shamir Adleman(RSA) cryptography is proposed.Residue number system(RNS) is introduced to realize high parallelism,thus all the elements under the same base are independent of each other and can be computed in parallel.Moreover,a simple and fast base transformation is used to achieve RNS Montgomery modular multiplication algorithm,which facilitates hardware implementation.Based on transport triggered architecture(TTA),the proposed architecture is designed to evaluate the performance and feasibility of the algorithm.With these optimizations,a decryption rate of 106 kbps can be achieved for 1 024-b RSA at the frequency of 100 MHz.
文摘In order to make the typical Montgomery’s algorithm suitable for implementation on FPGA, a modified version is proposed and then a high-performance systolic linear array architecture is designed for RSA cryptosystem on the basis of the optimized algorithm. The proposed systolic array architecture has dis- tinctive features, i.e. not only the computation speed is significantly fast but also the hardware overhead is drastically decreased. As a major practical result, the paper shows that it is possible to implement public-key cryptosystem at secure bit lengths on a single commercially available FPGA.