High-strength and high-modulus ultra-high molecular weight polyethylene(UHMWPE), named self-reinforced material, was obtained by the elongation of UHMWPE-montmorillonite nanocomposite at melting temperature. According...High-strength and high-modulus ultra-high molecular weight polyethylene(UHMWPE), named self-reinforced material, was obtained by the elongation of UHMWPE-montmorillonite nanocomposite at melting temperature. According to the scanning electron microscope(SEM) analysis, a great deal of fibrillar texture formed in the direction of elongation, and the tensile fractured surface was similar to that of highly oriented fiber. The transmission electron microscope(TEM) and selective area electron diffraction(SAED) analyses reveal that the reinforced phase of the self-reinforced material is an extended chain crystal and its size is about 50_200 nm wide and several microns long, and the montmorillonite layers are broken up to pieces in the size from 100 to 10 nm. The broken layers which have a huge surface area interacting strongly with macromolecules reduces the entanglement density of UHMWPE and induces the chain orientation in flow field. It is supposed that the astriction of montmorillonite layers to polyethylene chains is not only end-tethered but also side-tethered. The differential scan calorimetry(DSC) analysis shows that there are two endothermal peaks for the self-reinforced material, of which the peak at a higher temperature(136.4 ℃) is ascribed to the melting of the reinforced phase.展开更多
A novel surface modification method was proposed to improve the tribological property of Si. Multilayers were grown on Si(100) substrate by self-assembling monolayer (SAMs) method and filtered catholic vacuum arc ...A novel surface modification method was proposed to improve the tribological property of Si. Multilayers were grown on Si(100) substrate by self-assembling monolayer (SAMs) method and filtered catholic vacuum arc (FCVA) technique. The film composition and structure were characterized by using x-ray photoelectron spectroscope (XPS) and Raman spectroscopy (Raman). Surface morphology and the roughness were also analyzed by an atomic force microscope (AFM) and a scanning electron microscopy (SEM). The frictional behaviors of the films were evaluated by a UMT tester. Results showed that elastomeric nanocomposite monolayer prepared by SAM was uniformly distributed and isotropy, and the diamond-like carbon (DLC) film was successfully deposited by the FCVA technique. The friction coefficients of the prepared samples were in the range of 0.108-0.188. Furthermore, the friction coefficient slightly increased but the surface quality of the wear trace was improved after adding the copolymer elastomeric macromolecules SEBS on aminopropyl-triethoxysilane (APS) layer due to the inherent long chain of SEBS which abated the immediate impulsion at the interface and changed the kinetic energy into elastic potential energy, and stored it in SEBS.展开更多
Polymer/clay nanocomposite films were prepared by means of electrodeposition of aqueous suspension including cathodic electrophoretic acrylic resin (CEAR) and Na+-montmorillonite (NMMT). Studies of XRD,SEM and TEM ind...Polymer/clay nanocomposite films were prepared by means of electrodeposition of aqueous suspension including cathodic electrophoretic acrylic resin (CEAR) and Na+-montmorillonite (NMMT). Studies of XRD,SEM and TEM indicated well-dispersed NMMT platelets in the films prepared. The ideal dispersity achieved was thought to be the result of aqueous compatibility between CEAR molecules and NMMT platelets and the result of the water-involved process as well. The modulus and strength of the polymer/clay nanocomposite coatings tested by tensile testing and nano-indentation were effectively improved compared to those of the virgin CEAR film. In addition,the adhesion strength,flexibility and water-resistance represented by Chinese national standard (GB) kept the best grades.展开更多
In this work,we used coarse-grained molecular dynamics simulation methods to investigate the dispersion and percolation behavior of nanoparticles in polymer nanocomposite.Our aim was to investigate the correlation bet...In this work,we used coarse-grained molecular dynamics simulation methods to investigate the dispersion and percolation behavior of nanoparticles in polymer nanocomposite.Our aim was to investigate the correlation between particle arrangement in nearby layers and the stretching performance in composite systems by exploring the stress transfer processes during different stages of the stretching process.The machine learning technique of linear regression was used to quantitatively measure the efficiency of stress transfer between particles nearby.According to our research,increasing the strength of attraction can significantly enhance the particle dispersion and affect the percolation threshold.We also noticed a non-monotonic relationship between the interaction strength and the tensile stress.Additionally,we quantified the efficiency of nanoparticles and polymers at transferring stress to nearby nanoparticles.As a result,the stress value provided by each particle in the aggregation body is significantly increased by the aggregation behavior of nanoparticles.The non-monotonic behavior is caused by two variables:the rapid disintegration of aggregates and the improved stress transfer efficiency from polymers to nanoparticles.Significantly,it was discovered that the structural rearrangement of nanoparticles during stretching is the main reason that causes the yield-like behavior seen in poorly dispersed systems.展开更多
文摘High-strength and high-modulus ultra-high molecular weight polyethylene(UHMWPE), named self-reinforced material, was obtained by the elongation of UHMWPE-montmorillonite nanocomposite at melting temperature. According to the scanning electron microscope(SEM) analysis, a great deal of fibrillar texture formed in the direction of elongation, and the tensile fractured surface was similar to that of highly oriented fiber. The transmission electron microscope(TEM) and selective area electron diffraction(SAED) analyses reveal that the reinforced phase of the self-reinforced material is an extended chain crystal and its size is about 50_200 nm wide and several microns long, and the montmorillonite layers are broken up to pieces in the size from 100 to 10 nm. The broken layers which have a huge surface area interacting strongly with macromolecules reduces the entanglement density of UHMWPE and induces the chain orientation in flow field. It is supposed that the astriction of montmorillonite layers to polyethylene chains is not only end-tethered but also side-tethered. The differential scan calorimetry(DSC) analysis shows that there are two endothermal peaks for the self-reinforced material, of which the peak at a higher temperature(136.4 ℃) is ascribed to the melting of the reinforced phase.
基金Funded by the National Natural Science Foundation of China (Nos.50775101 and 51005103)Key Technology R&D Program of Jiangsu Province (No.BE2009123)+1 种基金Educational Commission of Jiangsu Province (No.09KJB460001)Doctoral Innovation Foundation of Jiangsu University (No.CX07B-03X)
文摘A novel surface modification method was proposed to improve the tribological property of Si. Multilayers were grown on Si(100) substrate by self-assembling monolayer (SAMs) method and filtered catholic vacuum arc (FCVA) technique. The film composition and structure were characterized by using x-ray photoelectron spectroscope (XPS) and Raman spectroscopy (Raman). Surface morphology and the roughness were also analyzed by an atomic force microscope (AFM) and a scanning electron microscopy (SEM). The frictional behaviors of the films were evaluated by a UMT tester. Results showed that elastomeric nanocomposite monolayer prepared by SAM was uniformly distributed and isotropy, and the diamond-like carbon (DLC) film was successfully deposited by the FCVA technique. The friction coefficients of the prepared samples were in the range of 0.108-0.188. Furthermore, the friction coefficient slightly increased but the surface quality of the wear trace was improved after adding the copolymer elastomeric macromolecules SEBS on aminopropyl-triethoxysilane (APS) layer due to the inherent long chain of SEBS which abated the immediate impulsion at the interface and changed the kinetic energy into elastic potential energy, and stored it in SEBS.
基金Supported by the National Natural Science Foundation of China (Grant No. 50572044)the 973 Project (Grant No. 2006CB605207-2)
文摘Polymer/clay nanocomposite films were prepared by means of electrodeposition of aqueous suspension including cathodic electrophoretic acrylic resin (CEAR) and Na+-montmorillonite (NMMT). Studies of XRD,SEM and TEM indicated well-dispersed NMMT platelets in the films prepared. The ideal dispersity achieved was thought to be the result of aqueous compatibility between CEAR molecules and NMMT platelets and the result of the water-involved process as well. The modulus and strength of the polymer/clay nanocomposite coatings tested by tensile testing and nano-indentation were effectively improved compared to those of the virgin CEAR film. In addition,the adhesion strength,flexibility and water-resistance represented by Chinese national standard (GB) kept the best grades.
基金This work was supported by the National Natural Science Foundation of China(Nos.21833008 and 52293471)and the National Key R&D Program of China(No.2022YFB3707303)。
文摘In this work,we used coarse-grained molecular dynamics simulation methods to investigate the dispersion and percolation behavior of nanoparticles in polymer nanocomposite.Our aim was to investigate the correlation between particle arrangement in nearby layers and the stretching performance in composite systems by exploring the stress transfer processes during different stages of the stretching process.The machine learning technique of linear regression was used to quantitatively measure the efficiency of stress transfer between particles nearby.According to our research,increasing the strength of attraction can significantly enhance the particle dispersion and affect the percolation threshold.We also noticed a non-monotonic relationship between the interaction strength and the tensile stress.Additionally,we quantified the efficiency of nanoparticles and polymers at transferring stress to nearby nanoparticles.As a result,the stress value provided by each particle in the aggregation body is significantly increased by the aggregation behavior of nanoparticles.The non-monotonic behavior is caused by two variables:the rapid disintegration of aggregates and the improved stress transfer efficiency from polymers to nanoparticles.Significantly,it was discovered that the structural rearrangement of nanoparticles during stretching is the main reason that causes the yield-like behavior seen in poorly dispersed systems.