In this paper, we investigate a new perturbation theorem for the Moore-Penrose metric generalized inverses of a bounded linear operator in Banach space. The main tool in this paper is "the generalized Neumann lemma"...In this paper, we investigate a new perturbation theorem for the Moore-Penrose metric generalized inverses of a bounded linear operator in Banach space. The main tool in this paper is "the generalized Neumann lemma" which is quite different from the method in [12] where "the generalized Banach lemma" was used. By the method of the perturba- tion analysis of bounded linear operators, we obtain an explicit perturbation theorem and three inequalities about error estimates for the Moore-Penrose metric generalized inverse of bounded linear operator under the generalized Neumann lemma and the concept of stable perturbations in Banach spaces.展开更多
On the basis of the paoers[3—7],this paper study the monotonicity problems for the positive semidefinite generalized inverses of the positive semidefinite self-conjugate matrices of quaternions in the Lowner partial ...On the basis of the paoers[3—7],this paper study the monotonicity problems for the positive semidefinite generalized inverses of the positive semidefinite self-conjugate matrices of quaternions in the Lowner partial order,give the explicit formulations of the monotonicity solution sets A{1;≥,T_1;≤B^(1)}and B{1;≥,T_2≥A^(1)}for the(1)-inverse,and two results of the monotonicity charac teriaztion for the(1,2)-inverse.展开更多
This article continues to study the research suggestions in depth made by M.Z.Nashed and G.F.Votruba in the journal"Bull.Amer.Math.Soc."in 1974.Concerned with the pricing of non-reachable"contingent cla...This article continues to study the research suggestions in depth made by M.Z.Nashed and G.F.Votruba in the journal"Bull.Amer.Math.Soc."in 1974.Concerned with the pricing of non-reachable"contingent claims"in an incomplete financial market,when constructing a specific bounded linear operator A:l_(1)^(n)→l_(2) from a non-reflexive Banach space l_(1)^(n) to a Hilbert space l_(2),the problem of non-reachable"contingent claims"pricing is reduced to researching the(single-valued)selection of the(set-valued)metric generalized inverse A■ of the operator A.In this paper,by using the Banach space structure theory and the generalized inverse method of operators,we obtain a bounded linear single-valued selection A^(σ)=A+of A■.展开更多
The properties and some equivalent characterizations of equal projection( EP), normal and Hermitian elements in a ring are studied by the generalized inverse theory. Some equivalent conditions that an element is EP ...The properties and some equivalent characterizations of equal projection( EP), normal and Hermitian elements in a ring are studied by the generalized inverse theory. Some equivalent conditions that an element is EP under the existence of core inverses are proposed. Let a∈R , then a is EP if and only if aa a^# = a^#aa . At the same time, the equivalent characterizations of a regular element to be EP are discussed.Let a∈R, then there exist b∈R such that a = aba and a is EP if and only if a∈R , a = a ba. Similarly, some equivalent conditions that an element is normal under the existence of core inverses are proposed. Let a∈R , then a is normal if and only if a^*a = a a^*. Also, some equivalent conditions of normal and Hermitian elements in rings with involution involving powers of their group and Moore-Penrose inverses are presented. Let a∈R ∩R^#, n∈N, then a is normal if and only if a^* a^+( a^#) n = a^# a*( a^+) ^n. The results generalize the conclusions of Mosiet al.展开更多
Let a, b be two generalized Drazin invertible elements in a Banach algebra. An explicit expression for the generalized Drazin inverse of the sum a + b in terms of a,b,a^d,b^d is given. The generalized Drazin inverse f...Let a, b be two generalized Drazin invertible elements in a Banach algebra. An explicit expression for the generalized Drazin inverse of the sum a + b in terms of a,b,a^d,b^d is given. The generalized Drazin inverse for the sum of two elements in a Banach algebra is studied by means of the system of idempotents. It is first proved that a + b∈A^(qnil) under the condition that a,b∈A^(qnil),aba = 0 and ab^2= 0 and then the explicit expressions for the generalized Drazin inverse of the sum a + b under some newconditions are given. Also, some known results are extended.展开更多
Let R be an associative ring with unity 1. The existence of the Moore-Penrose inverses of block matrices overR is investigated and the sufficient ad necessary conditions for such existence are obtained. Furthermore, ...Let R be an associative ring with unity 1. The existence of the Moore-Penrose inverses of block matrices overR is investigated and the sufficient ad necessary conditions for such existence are obtained. Furthermore, the representation of the Moore-Penrose inverse of M=[0 A C B]is given under the condition of EBF - 0, where E - I - CCT and F - I -AfA. This result generalizes the representation of the Moore-Penrose inverse of the companion matrix M =[0 a In b]due to Pedro Patricio. As for applications, some examples are given to illustrate the obtained results.展开更多
This paper presents a proper splitting iterative method for comparing the general restricted linear euqations Ax=b, x ∈T (where, b ∈AT, and T is an arbitrary but fixed subspace of C<sup>m</sup>) and th...This paper presents a proper splitting iterative method for comparing the general restricted linear euqations Ax=b, x ∈T (where, b ∈AT, and T is an arbitrary but fixed subspace of C<sup>m</sup>) and the generalized in A<sub>T,S</sub> For the special case when b ∈AT and dim(T)=dim(AT), this splitting iterative methverse A<sub>T,S</sub> hod converges to A<sub>T,S</sub>b (the unique solution of the general restricted system Ax=bx ∈T).展开更多
This paper researches the following inverse eigenvalue problem for arrow-like matrices. Give two characteristic pairs, get a generalized arrow-like matrix, let the two characteristic pairs are the characteristic pairs...This paper researches the following inverse eigenvalue problem for arrow-like matrices. Give two characteristic pairs, get a generalized arrow-like matrix, let the two characteristic pairs are the characteristic pairs of this generalized arrow-like matrix. The expression and an algorithm of the solution of the problem is given, and a numerical example is provided.展开更多
The perturbation problem of generalized inverse is studied. And some new stability characteristics of generalized inverses were presented. It was also proved that the stability characteristics of generalized inverses ...The perturbation problem of generalized inverse is studied. And some new stability characteristics of generalized inverses were presented. It was also proved that the stability characteristics of generalized inverses were independent of the choice of the generalized inverse. Based on this result, two sufficient and necessary conditions for the lower semi-continuity of generalized inverses as the set-valued mappings are given.展开更多
In this paper, the reverse order law for the Moore-Penrose inverse of closed linear operators with closed range is investigated by virtue of the Norm-preserving extension of the bounded linear operators. The results g...In this paper, the reverse order law for the Moore-Penrose inverse of closed linear operators with closed range is investigated by virtue of the Norm-preserving extension of the bounded linear operators. The results generalize some results obtained by S Izumino in [12].展开更多
Let B(E,F) be the set of all bounded linear operators from a Banach space E into another Banach space F,B^+(E, F) the set of all double splitting operators in B(E, F)and GI(A) the set of generalized inverses of A ∈ B...Let B(E,F) be the set of all bounded linear operators from a Banach space E into another Banach space F,B^+(E, F) the set of all double splitting operators in B(E, F)and GI(A) the set of generalized inverses of A ∈ B^+(E, F). In this paper we introduce an unbounded domain ?(A, A^+) in B(E, F) for A ∈ B^+(E, F) and A^+∈GI(A), and provide a necessary and sufficient condition for T ∈ ?(A, A^+). Then several conditions equivalent to the following property are proved: B = A+(IF+(T-A)A^+)^(-1) is the generalized inverse of T with R(B)=R(A^+) and N(B)=N(A^+), for T∈?(A, A^+), where IF is the identity on F. Also we obtain the smooth(C~∞) diffeomorphism M_A(A^+,T) from ?(A,A^+) onto itself with the fixed point A. Let S = {T ∈ ?(A, A^+) : R(T)∩ N(A^+) ={0}}, M(X) = {T ∈ B(E,F) : TN(X) ? R(X)} for X ∈ B(E,F)}, and F = {M(X) : ?X ∈B(E, F)}. Using the diffeomorphism M_A(A^+,T) we prove the following theorem: S is a smooth submanifold in B(E,F) and tangent to M(X) at any X ∈ S. The theorem expands the smooth integrability of F at A from a local neighborhoold at A to the global unbounded domain ?(A, A^+). It seems to be useful for developing global analysis and geomatrical method in differential equations.展开更多
Let A be an unital C*-algebra, a, x and y are elements in A. In this paper, we present a method how to calculate the Moore-Penrose inverse of a- xy*and investigate the expression for some new special cases of(a- xy*).
Two efficient recursive algorithms epsilon_algorithm and eta_algorithm are introduced to compute the generalized inverse function_valued Padé approximants. The approximants were used to accelerate the convergenc...Two efficient recursive algorithms epsilon_algorithm and eta_algorithm are introduced to compute the generalized inverse function_valued Padé approximants. The approximants were used to accelerate the convergence of the power series with function_valued coefficients and to estimate characteristic value of the integral equations. Famous Wynn identities of the Pad approximants is also established by means of the connection of two algorithms.展开更多
Let R be a ring, * be an involutory function of the set of all finite matrices over R. In this paper, necessary and sufficient conditions are given for a matrix to have a (1,3)-inverse, (1,4)-inverse, or Moore-P enros...Let R be a ring, * be an involutory function of the set of all finite matrices over R. In this paper, necessary and sufficient conditions are given for a matrix to have a (1,3)-inverse, (1,4)-inverse, or Moore-P enrose inverse, relative to *. Some results about generalized inverses of matrices over division rings are generalized and improved.展开更多
After choosing weight functions suitably, we define a Banach spaceH ω μ (L) and discuss the generalized inverse of singular integral operators on an open arc. Using the generalized inverse, we obtain the solutions f...After choosing weight functions suitably, we define a Banach spaceH ω μ (L) and discuss the generalized inverse of singular integral operators on an open arc. Using the generalized inverse, we obtain the solutions for the following singular integral equation展开更多
A new generalized inverse function-valued Padé approximation (GIFPA) was defined. Existence condition of GIFPA was given and its uniqueness theorem was proved. All possible degeneracy cases of GIFPA were discusse...A new generalized inverse function-valued Padé approximation (GIFPA) was defined. Existence condition of GIFPA was given and its uniqueness theorem was proved. All possible degeneracy cases of GIFPA were discussed and constructed. An example was given to illustrate its application.展开更多
The Moore-Penrose inverse of a block k-circulant matrix whose blocks are arbitrary matrices are obtained when k has unit modulus. In the meantime. explicit formulae for finding group inverses of certain specified k-ci...The Moore-Penrose inverse of a block k-circulant matrix whose blocks are arbitrary matrices are obtained when k has unit modulus. In the meantime. explicit formulae for finding group inverses of certain specified k-circulant matrices are also given.展开更多
In this paper,we propose a numerical method to estimate the unknown order of a Riemann-Liouville fractional derivative for a fractional Stokes' first problem for a heated generalized second grade fluid.The implicit n...In this paper,we propose a numerical method to estimate the unknown order of a Riemann-Liouville fractional derivative for a fractional Stokes' first problem for a heated generalized second grade fluid.The implicit numerical method is employed to solve the direct problem.For the inverse problem,we first obtain the fractional sensitivity equation by means of the digamma function,and then we propose an efficient numerical method,that is,the Levenberg-Marquardt algorithm based on a fractional derivative,to estimate the unknown order of a Riemann-Liouville fractional derivative.In order to demonstrate the effectiveness of the proposed numerical method,two cases in which the measurement values contain random measurement error or not are considered.The computational results demonstrate that the proposed numerical method could efficiently obtain the optimal estimation of the unknown order of a RiemannLiouville fractional derivative for a fractional Stokes' first problem for a heated generalized second grade fluid.展开更多
This paper deals with the Bayesian estimation of Shannon entropy for the generalized inverse exponential distribution.Assuming that the observed samples are taken from the upper record ranked set sampling(URRSS)and up...This paper deals with the Bayesian estimation of Shannon entropy for the generalized inverse exponential distribution.Assuming that the observed samples are taken from the upper record ranked set sampling(URRSS)and upper record values(URV)schemes.Formulas of Bayesian estimators are derived depending on a gamma prior distribution considering the squared error,linear exponential and precautionary loss functions,in addition,we obtain Bayesian credible intervals.The random-walk Metropolis-Hastings algorithm is handled to generate Markov chain Monte Carlo samples from the posterior distribution.Then,the behavior of the estimates is examined at various record values.The output of the study shows that the entropy Bayesian estimates under URRSS are more convenient than the other estimates under URV in the majority of the situations.Also,the entropy Bayesian estimates perform well as the number of records increases.The obtained results validate the usefulness and efficiency of the URV method.Real data is analyzed for more clarifying purposes which validate the theoretical results.展开更多
This paper presents a recursive procedure to compute the Moore-Penrose inverse of a matrix A. The method is based on the expression for the Moore-Penrose inverse of rank-one modified matrix. The computational complexi...This paper presents a recursive procedure to compute the Moore-Penrose inverse of a matrix A. The method is based on the expression for the Moore-Penrose inverse of rank-one modified matrix. The computational complexity of the method is analyzed and a numerical example is included. A variant of the algorithm with lower computational complexity is also proposed. Both algorithms are tested on randomly generated matrices. Numerical performance confirms our theoretic results.展开更多
基金Supported by the Nature Science Foundation of China(11471091 and 11401143)
文摘In this paper, we investigate a new perturbation theorem for the Moore-Penrose metric generalized inverses of a bounded linear operator in Banach space. The main tool in this paper is "the generalized Neumann lemma" which is quite different from the method in [12] where "the generalized Banach lemma" was used. By the method of the perturba- tion analysis of bounded linear operators, we obtain an explicit perturbation theorem and three inequalities about error estimates for the Moore-Penrose metric generalized inverse of bounded linear operator under the generalized Neumann lemma and the concept of stable perturbations in Banach spaces.
文摘On the basis of the paoers[3—7],this paper study the monotonicity problems for the positive semidefinite generalized inverses of the positive semidefinite self-conjugate matrices of quaternions in the Lowner partial order,give the explicit formulations of the monotonicity solution sets A{1;≥,T_1;≤B^(1)}and B{1;≥,T_2≥A^(1)}for the(1)-inverse,and two results of the monotonicity charac teriaztion for the(1,2)-inverse.
基金supported by the National Science Foundation (12001142)Harbin Normal University doctoral initiation Fund (XKB201812)supported by the Science Foundation Grant of Heilongjiang Province (LH2019A017)
文摘This article continues to study the research suggestions in depth made by M.Z.Nashed and G.F.Votruba in the journal"Bull.Amer.Math.Soc."in 1974.Concerned with the pricing of non-reachable"contingent claims"in an incomplete financial market,when constructing a specific bounded linear operator A:l_(1)^(n)→l_(2) from a non-reflexive Banach space l_(1)^(n) to a Hilbert space l_(2),the problem of non-reachable"contingent claims"pricing is reduced to researching the(single-valued)selection of the(set-valued)metric generalized inverse A■ of the operator A.In this paper,by using the Banach space structure theory and the generalized inverse method of operators,we obtain a bounded linear single-valued selection A^(σ)=A+of A■.
基金The National Natural Science Foundation of China(No.11371089)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20120092110020)the Natural Science Foundation of Jiangsu Province(No.BK20141327)
文摘The properties and some equivalent characterizations of equal projection( EP), normal and Hermitian elements in a ring are studied by the generalized inverse theory. Some equivalent conditions that an element is EP under the existence of core inverses are proposed. Let a∈R , then a is EP if and only if aa a^# = a^#aa . At the same time, the equivalent characterizations of a regular element to be EP are discussed.Let a∈R, then there exist b∈R such that a = aba and a is EP if and only if a∈R , a = a ba. Similarly, some equivalent conditions that an element is normal under the existence of core inverses are proposed. Let a∈R , then a is normal if and only if a^*a = a a^*. Also, some equivalent conditions of normal and Hermitian elements in rings with involution involving powers of their group and Moore-Penrose inverses are presented. Let a∈R ∩R^#, n∈N, then a is normal if and only if a^* a^+( a^#) n = a^# a*( a^+) ^n. The results generalize the conclusions of Mosiet al.
基金The National Natural Science Foundation of China(No.11371089,11371165)the Natural Science Foundation of Jilin Province(No.20160101264JC)+2 种基金the Specialized Research Fund for the Doctoral Program of Higher Education(No.20120092110020)the Natural Science Foundation of Jiangsu Province(No.BK20141327)the Fundamental Research Funds for the Central Universities,the Foundation of Graduate Innovation Program of Jiangsu Province(No.KYZZ15-0049)
文摘Let a, b be two generalized Drazin invertible elements in a Banach algebra. An explicit expression for the generalized Drazin inverse of the sum a + b in terms of a,b,a^d,b^d is given. The generalized Drazin inverse for the sum of two elements in a Banach algebra is studied by means of the system of idempotents. It is first proved that a + b∈A^(qnil) under the condition that a,b∈A^(qnil),aba = 0 and ab^2= 0 and then the explicit expressions for the generalized Drazin inverse of the sum a + b under some newconditions are given. Also, some known results are extended.
基金The National Natural Science Foundation of China(No.11371089)the Natural Science Foundation of Jiangsu Province(No.BK20141327)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education(No.20120092110020)the Natural Science Foundation of Jiangsu Higher Education Institutions of China(No.15KJB110021)
文摘Let R be an associative ring with unity 1. The existence of the Moore-Penrose inverses of block matrices overR is investigated and the sufficient ad necessary conditions for such existence are obtained. Furthermore, the representation of the Moore-Penrose inverse of M=[0 A C B]is given under the condition of EBF - 0, where E - I - CCT and F - I -AfA. This result generalizes the representation of the Moore-Penrose inverse of the companion matrix M =[0 a In b]due to Pedro Patricio. As for applications, some examples are given to illustrate the obtained results.
基金This project is supported by Science and Technology Foundation of Shanghai Higher Eduction,Doctoral Program Foundation of Higher Education in China.National Nature Science Foundation of China and Youth Science Foundation of Universities in Shanghai.
文摘This paper presents a proper splitting iterative method for comparing the general restricted linear euqations Ax=b, x ∈T (where, b ∈AT, and T is an arbitrary but fixed subspace of C<sup>m</sup>) and the generalized in A<sub>T,S</sub> For the special case when b ∈AT and dim(T)=dim(AT), this splitting iterative methverse A<sub>T,S</sub> hod converges to A<sub>T,S</sub>b (the unique solution of the general restricted system Ax=bx ∈T).
文摘This paper researches the following inverse eigenvalue problem for arrow-like matrices. Give two characteristic pairs, get a generalized arrow-like matrix, let the two characteristic pairs are the characteristic pairs of this generalized arrow-like matrix. The expression and an algorithm of the solution of the problem is given, and a numerical example is provided.
基金Project supported by the National Natural Science Foundation of China (Nos. 10571150 and 10271053)
文摘The perturbation problem of generalized inverse is studied. And some new stability characteristics of generalized inverses were presented. It was also proved that the stability characteristics of generalized inverses were independent of the choice of the generalized inverse. Based on this result, two sufficient and necessary conditions for the lower semi-continuity of generalized inverses as the set-valued mappings are given.
文摘In this paper, the reverse order law for the Moore-Penrose inverse of closed linear operators with closed range is investigated by virtue of the Norm-preserving extension of the bounded linear operators. The results generalize some results obtained by S Izumino in [12].
文摘Let B(E,F) be the set of all bounded linear operators from a Banach space E into another Banach space F,B^+(E, F) the set of all double splitting operators in B(E, F)and GI(A) the set of generalized inverses of A ∈ B^+(E, F). In this paper we introduce an unbounded domain ?(A, A^+) in B(E, F) for A ∈ B^+(E, F) and A^+∈GI(A), and provide a necessary and sufficient condition for T ∈ ?(A, A^+). Then several conditions equivalent to the following property are proved: B = A+(IF+(T-A)A^+)^(-1) is the generalized inverse of T with R(B)=R(A^+) and N(B)=N(A^+), for T∈?(A, A^+), where IF is the identity on F. Also we obtain the smooth(C~∞) diffeomorphism M_A(A^+,T) from ?(A,A^+) onto itself with the fixed point A. Let S = {T ∈ ?(A, A^+) : R(T)∩ N(A^+) ={0}}, M(X) = {T ∈ B(E,F) : TN(X) ? R(X)} for X ∈ B(E,F)}, and F = {M(X) : ?X ∈B(E, F)}. Using the diffeomorphism M_A(A^+,T) we prove the following theorem: S is a smooth submanifold in B(E,F) and tangent to M(X) at any X ∈ S. The theorem expands the smooth integrability of F at A from a local neighborhoold at A to the global unbounded domain ?(A, A^+). It seems to be useful for developing global analysis and geomatrical method in differential equations.
文摘Let A be an unital C*-algebra, a, x and y are elements in A. In this paper, we present a method how to calculate the Moore-Penrose inverse of a- xy*and investigate the expression for some new special cases of(a- xy*).
文摘Two efficient recursive algorithms epsilon_algorithm and eta_algorithm are introduced to compute the generalized inverse function_valued Padé approximants. The approximants were used to accelerate the convergence of the power series with function_valued coefficients and to estimate characteristic value of the integral equations. Famous Wynn identities of the Pad approximants is also established by means of the connection of two algorithms.
文摘Let R be a ring, * be an involutory function of the set of all finite matrices over R. In this paper, necessary and sufficient conditions are given for a matrix to have a (1,3)-inverse, (1,4)-inverse, or Moore-P enrose inverse, relative to *. Some results about generalized inverses of matrices over division rings are generalized and improved.
基金Supported by the National Natural Science Foundation of China( No.2 0 1980 6 33)
文摘After choosing weight functions suitably, we define a Banach spaceH ω μ (L) and discuss the generalized inverse of singular integral operators on an open arc. Using the generalized inverse, we obtain the solutions for the following singular integral equation
文摘A new generalized inverse function-valued Padé approximation (GIFPA) was defined. Existence condition of GIFPA was given and its uniqueness theorem was proved. All possible degeneracy cases of GIFPA were discussed and constructed. An example was given to illustrate its application.
文摘The Moore-Penrose inverse of a block k-circulant matrix whose blocks are arbitrary matrices are obtained when k has unit modulus. In the meantime. explicit formulae for finding group inverses of certain specified k-circulant matrices are also given.
基金supported by the National Natural Science Foundation of China(Grants 11472161,11102102,and 91130017)the Independent Innovation Foundation of Shandong University(Grant 2013ZRYQ002)the Natural Science Foundation of Shandong Province(Grant ZR2014AQ015)
文摘In this paper,we propose a numerical method to estimate the unknown order of a Riemann-Liouville fractional derivative for a fractional Stokes' first problem for a heated generalized second grade fluid.The implicit numerical method is employed to solve the direct problem.For the inverse problem,we first obtain the fractional sensitivity equation by means of the digamma function,and then we propose an efficient numerical method,that is,the Levenberg-Marquardt algorithm based on a fractional derivative,to estimate the unknown order of a Riemann-Liouville fractional derivative.In order to demonstrate the effectiveness of the proposed numerical method,two cases in which the measurement values contain random measurement error or not are considered.The computational results demonstrate that the proposed numerical method could efficiently obtain the optimal estimation of the unknown order of a RiemannLiouville fractional derivative for a fractional Stokes' first problem for a heated generalized second grade fluid.
基金A.R.A.Alanzi would like to thank the Deanship of Scientific Research at Majmaah University for financial support and encouragement.
文摘This paper deals with the Bayesian estimation of Shannon entropy for the generalized inverse exponential distribution.Assuming that the observed samples are taken from the upper record ranked set sampling(URRSS)and upper record values(URV)schemes.Formulas of Bayesian estimators are derived depending on a gamma prior distribution considering the squared error,linear exponential and precautionary loss functions,in addition,we obtain Bayesian credible intervals.The random-walk Metropolis-Hastings algorithm is handled to generate Markov chain Monte Carlo samples from the posterior distribution.Then,the behavior of the estimates is examined at various record values.The output of the study shows that the entropy Bayesian estimates under URRSS are more convenient than the other estimates under URV in the majority of the situations.Also,the entropy Bayesian estimates perform well as the number of records increases.The obtained results validate the usefulness and efficiency of the URV method.Real data is analyzed for more clarifying purposes which validate the theoretical results.
文摘This paper presents a recursive procedure to compute the Moore-Penrose inverse of a matrix A. The method is based on the expression for the Moore-Penrose inverse of rank-one modified matrix. The computational complexity of the method is analyzed and a numerical example is included. A variant of the algorithm with lower computational complexity is also proposed. Both algorithms are tested on randomly generated matrices. Numerical performance confirms our theoretic results.