Because the applications of single-anchor leg mooring yoke systems(SYSs)are rarely studied in the offshore industry,the design of such systems features some uncertainties.This paper investigated the effect of eccentri...Because the applications of single-anchor leg mooring yoke systems(SYSs)are rarely studied in the offshore industry,the design of such systems features some uncertainties.This paper investigated the effect of eccentricity on the wear of the topside axial bearing of a SYS.The eccentricity of the topside was verified by on-site inspection,and the axial bearing wear was found to be far more serious than the original design.The contact status between the axial bearing and flange surface was studied on the basis of the actual topside load by using nonlinear finite element analysis.Wear tests of the topside bearing under uniform and eccentric loads were also performed to study the effect of eccentric loads on the wear rate.The key parameters obtained from numerical simulations and experimentation were used to calculate the wear depth via a simplified linear wear model based on the product of the pressure and sliding distance.Results showed that eccentric loads are the main factor responsible for the excessive wear of topside axial bearings.展开更多
Floating platform system has been extensively used in ocean exploitation, particularly for a tension-leg platform (TLP) system in deep water. Most of the TLPs are multi-mooring systems, where multi-joints are connec...Floating platform system has been extensively used in ocean exploitation, particularly for a tension-leg platform (TLP) system in deep water. Most of the TLPs are multi-mooring systems, where multi-joints are connected to the tension-legs so that the platform is not allowed to twist freely and may subject to enormous force induced by large incident waves in the weak-direction of the structure. This study aims to exploit a single moored offshore platform system that may attract less force and can be operated with less effort. In our analysis, in addition to mechanical properties of the tether, two important properties are also taken into consideration for the single mooring tether with expanded cross sectional dimension and utilization of stronger material, namely, the sag-extensibility and the flexural rigidity. Finally, the dynamic structural behavior produced by the mechanical effects on the new system is investigated and compared with that of traditional design while the wave-structure interactions of large body are also accounted for. Our study finds that the neglect of sag-extensibility or the flexural rigidity of large, strong mooring cable may result in a conservative but not necessarily safe design.展开更多
This work investigated the influence of two types of mooring systems on the hydrodynamic performance of a two-body floating wave energy converter(WEC). It also investigated the effects of the physical parameters of th...This work investigated the influence of two types of mooring systems on the hydrodynamic performance of a two-body floating wave energy converter(WEC). It also investigated the effects of the physical parameters of the mooring system on the amount of extractable power from incident waves in the frequency domain. The modeled converter comprised a floating body(a buoy), a submerged body with two mooring systems, and a coupling system for two bodies. The coupling system was a simplified power take-off system that was modeled by a linear spring-damper model. The tension leg mooring system could drastically affect the heave motion of the submerged body of the model and increase relative displacement between the two bodies. The effects of the stiffness parameter of the mooring system on power absorption exceeded those of the pretension tendon force.展开更多
The mooring and riser system is the most critical part of an ofshore oil terminal.Traditionally,these two parts are designed separately without considering the nonlinear interaction between them.Thus,the present paper...The mooring and riser system is the most critical part of an ofshore oil terminal.Traditionally,these two parts are designed separately without considering the nonlinear interaction between them.Thus,the present paper aims to develop an inte-grated design process for riser systems with a lazy-S confguration and mooring systems in the ofshore catenary anchor leg mooring(CALM)oil terminal.One of the important criteria considered in this integrated design is the ofset diagram and safe operation zone(SAFOP)related to the mooring system and the riser,respectively.These two diagrams are obtained separately by diferent analyses;therefore,codes or standards are available separately for two components.In this methodol-ogy,the diagrams of both risers and mooring lines are incorporated into a single spiral,thus identifying the safe and failure zones of risers and the mooring lines of the oil terminal.This,in turn,leads to substantial benefts in terms of overall system response,cost reduction,and safety to the ofshore oil terminal.To implement this process,three diferent riser lengths with the lazy-S confguration are considered at three diferent sea depths at the terminal installation site.For each condition,the integrated design of the mooring system and riser is executed according to the derived procedure.Then,coupled dynamic models,wherein both buoys and hoses are included,are developed using OrcaFlex.Results show that the criteria of the relevant regulations are not satisfed by reducing the length of the riser relative to the designed size.Further,as water depth increases,this type of riser confguration shows good coupled performance while interacting with the mooring system.In the cross ofset mode,the maximum margin is created between the ofset diagram and the SAFOP diagram,while the most critical dynamic response of the tanker and terminal system occurs in the near and far modes.Therefore,with this method,the best position for the riser direction with the tanker direction is 90°in the best case.展开更多
由于地震、断层、滑坡和沉降等原因,张力腿平台(tension leg platform, TLP)下端的桩基可能发生错动。考虑平台本体有限位移、六自由度运动耦合、瞬时位置和瞬时湿表面、自由表面效应等非线性因素,建立TLP系统的耦合动力学方程。采用变...由于地震、断层、滑坡和沉降等原因,张力腿平台(tension leg platform, TLP)下端的桩基可能发生错动。考虑平台本体有限位移、六自由度运动耦合、瞬时位置和瞬时湿表面、自由表面效应等非线性因素,建立TLP系统的耦合动力学方程。采用变步长龙格库塔算法编写了数值计算程序,得到了波浪作用下平台本体六个自由度运动响应和系泊张力响应。通过文献对比,验证了理论模型和计算程序的正确性。基于南海流花油田一年一遇的设计工况,计算得到桩基下沉0.1 m时16个工况下平台系统的动力响应的时间历程。以正常工况为基准,对比了不同工况中平台本体六个自由度运动、系泊张力的幅值和标准差,研究结果表明:桩基下沉对平台的六自由度响应和张力腿张力幅值产生明显的影响,但不加剧运动响应和张力响应的波动;桩基下沉会破坏平台系统原有的对称性,引起垂荡位移的较大恶化;桩基下沉会引起张力腿张力大幅增大,存在张力腿断裂和系泊失效的风险。展开更多
研究张力腿平台(Tension Leg Platform,TLP)码头舾装阶段系泊系统设计的关键技术,包括:系泊方案的设计要点、系泊环境载荷的计算方法、系泊力的时域计算和系泊应急预案准备等。以一艘深水TLP在L型码头的系泊为例,详细介绍TLP的系泊技术...研究张力腿平台(Tension Leg Platform,TLP)码头舾装阶段系泊系统设计的关键技术,包括:系泊方案的设计要点、系泊环境载荷的计算方法、系泊力的时域计算和系泊应急预案准备等。以一艘深水TLP在L型码头的系泊为例,详细介绍TLP的系泊技术,提出一套切实可行的系泊方案。研究成果可为TLP建造提供参考。展开更多
基金supported by the Project of China Offshore Oil Engineering Company(Tianjin)CCL2014CFD。
文摘Because the applications of single-anchor leg mooring yoke systems(SYSs)are rarely studied in the offshore industry,the design of such systems features some uncertainties.This paper investigated the effect of eccentricity on the wear of the topside axial bearing of a SYS.The eccentricity of the topside was verified by on-site inspection,and the axial bearing wear was found to be far more serious than the original design.The contact status between the axial bearing and flange surface was studied on the basis of the actual topside load by using nonlinear finite element analysis.Wear tests of the topside bearing under uniform and eccentric loads were also performed to study the effect of eccentric loads on the wear rate.The key parameters obtained from numerical simulations and experimentation were used to calculate the wear depth via a simplified linear wear model based on the product of the pressure and sliding distance.Results showed that eccentric loads are the main factor responsible for the excessive wear of topside axial bearings.
基金financially supported by the Science Council of Taiwan (Grant No. NSC-97-2221-E-110-080)
文摘Floating platform system has been extensively used in ocean exploitation, particularly for a tension-leg platform (TLP) system in deep water. Most of the TLPs are multi-mooring systems, where multi-joints are connected to the tension-legs so that the platform is not allowed to twist freely and may subject to enormous force induced by large incident waves in the weak-direction of the structure. This study aims to exploit a single moored offshore platform system that may attract less force and can be operated with less effort. In our analysis, in addition to mechanical properties of the tether, two important properties are also taken into consideration for the single mooring tether with expanded cross sectional dimension and utilization of stronger material, namely, the sag-extensibility and the flexural rigidity. Finally, the dynamic structural behavior produced by the mechanical effects on the new system is investigated and compared with that of traditional design while the wave-structure interactions of large body are also accounted for. Our study finds that the neglect of sag-extensibility or the flexural rigidity of large, strong mooring cable may result in a conservative but not necessarily safe design.
文摘This work investigated the influence of two types of mooring systems on the hydrodynamic performance of a two-body floating wave energy converter(WEC). It also investigated the effects of the physical parameters of the mooring system on the amount of extractable power from incident waves in the frequency domain. The modeled converter comprised a floating body(a buoy), a submerged body with two mooring systems, and a coupling system for two bodies. The coupling system was a simplified power take-off system that was modeled by a linear spring-damper model. The tension leg mooring system could drastically affect the heave motion of the submerged body of the model and increase relative displacement between the two bodies. The effects of the stiffness parameter of the mooring system on power absorption exceeded those of the pretension tendon force.
文摘The mooring and riser system is the most critical part of an ofshore oil terminal.Traditionally,these two parts are designed separately without considering the nonlinear interaction between them.Thus,the present paper aims to develop an inte-grated design process for riser systems with a lazy-S confguration and mooring systems in the ofshore catenary anchor leg mooring(CALM)oil terminal.One of the important criteria considered in this integrated design is the ofset diagram and safe operation zone(SAFOP)related to the mooring system and the riser,respectively.These two diagrams are obtained separately by diferent analyses;therefore,codes or standards are available separately for two components.In this methodol-ogy,the diagrams of both risers and mooring lines are incorporated into a single spiral,thus identifying the safe and failure zones of risers and the mooring lines of the oil terminal.This,in turn,leads to substantial benefts in terms of overall system response,cost reduction,and safety to the ofshore oil terminal.To implement this process,three diferent riser lengths with the lazy-S confguration are considered at three diferent sea depths at the terminal installation site.For each condition,the integrated design of the mooring system and riser is executed according to the derived procedure.Then,coupled dynamic models,wherein both buoys and hoses are included,are developed using OrcaFlex.Results show that the criteria of the relevant regulations are not satisfed by reducing the length of the riser relative to the designed size.Further,as water depth increases,this type of riser confguration shows good coupled performance while interacting with the mooring system.In the cross ofset mode,the maximum margin is created between the ofset diagram and the SAFOP diagram,while the most critical dynamic response of the tanker and terminal system occurs in the near and far modes.Therefore,with this method,the best position for the riser direction with the tanker direction is 90°in the best case.
文摘由于地震、断层、滑坡和沉降等原因,张力腿平台(tension leg platform, TLP)下端的桩基可能发生错动。考虑平台本体有限位移、六自由度运动耦合、瞬时位置和瞬时湿表面、自由表面效应等非线性因素,建立TLP系统的耦合动力学方程。采用变步长龙格库塔算法编写了数值计算程序,得到了波浪作用下平台本体六个自由度运动响应和系泊张力响应。通过文献对比,验证了理论模型和计算程序的正确性。基于南海流花油田一年一遇的设计工况,计算得到桩基下沉0.1 m时16个工况下平台系统的动力响应的时间历程。以正常工况为基准,对比了不同工况中平台本体六个自由度运动、系泊张力的幅值和标准差,研究结果表明:桩基下沉对平台的六自由度响应和张力腿张力幅值产生明显的影响,但不加剧运动响应和张力响应的波动;桩基下沉会破坏平台系统原有的对称性,引起垂荡位移的较大恶化;桩基下沉会引起张力腿张力大幅增大,存在张力腿断裂和系泊失效的风险。
文摘研究张力腿平台(Tension Leg Platform,TLP)码头舾装阶段系泊系统设计的关键技术,包括:系泊方案的设计要点、系泊环境载荷的计算方法、系泊力的时域计算和系泊应急预案准备等。以一艘深水TLP在L型码头的系泊为例,详细介绍TLP的系泊技术,提出一套切实可行的系泊方案。研究成果可为TLP建造提供参考。