In this paper, we introduce a system architecture for a patient centered mobile health monitoring (PCMHM) system that deploys different sensors to determine patients’ activities, medical conditions, and the cause of ...In this paper, we introduce a system architecture for a patient centered mobile health monitoring (PCMHM) system that deploys different sensors to determine patients’ activities, medical conditions, and the cause of an emergency event. This system combines and analyzes sensor data to produce the patients’ detailed health information in real-time. A central computational node with data analyzing capability is used for sensor data integration and analysis. In addition to medical sensors, surrounding environmental sensors are also utilized to enhance the interpretation of the data and to improve medical diagnosis. The PCMHM system has the ability to provide on-demand health information of patients via the Internet, track real-time daily activities and patients’ health condition. This system also includes the capability for assessing patients’ posture and fall detection.展开更多
Hydrological monitoring and real-time access to data are valuable for hydrological research and water resources management. In the recent decades, rapid developments in digital technology, micro-electromechanical syst...Hydrological monitoring and real-time access to data are valuable for hydrological research and water resources management. In the recent decades, rapid developments in digital technology, micro-electromechanical systems, low power micro-sensing technologies and improved industrial manufacturing processes have resulted in retrieving real-time data through Wireless Sensor Networks (WSNs) systems. In this study, a remotely operated low-cost and robust WSN system was developed to monitor and collect real-time hydrologic data from a small agricultural watershed in harsh weather conditions and upland rolling topography of Southern Ontario, Canada. The WSN system was assembled using off-the-shelf hardware components, and an open source operating system was used to minimize the cost. The developed system was rigorously tested in the laboratory and the field and found to be accurate and reliable for monitoring climatic and hydrologic parameters. The soil moisture and runoff data for 7 springs, 19 summer, and 19 fall season rainfall events over the period of more than two years were successfully collected in a small experimental agricultural watershed situated near Elora, Ontario, Canada. The developed WSN system can be readily extended for the purpose of most hydrological monitoring applications, although it was explicitly tailored for a project focused on mapping the Variable Source Areas (VSAs) in a small agricultural watershed.展开更多
This paper takes the right branch main channel Bridge of Huai River Bridge in Huainan as the engineering background, uses the finite element software Midas and the ANSYS to simulate and analyze the jacking constructio...This paper takes the right branch main channel Bridge of Huai River Bridge in Huainan as the engineering background, uses the finite element software Midas and the ANSYS to simulate and analyze the jacking construction of the bridge, and according to the theoretical calculation, the construction monitoring plan is developed, and the stress and deformation of the key section and part of the structure are monitored. Construction monitoring combined with 3 g network and data acquisition module, monitoring data for the real time measurement, the centralized acquisition and wireless transmission, accomplish on-line real-time monitoring of the bridge construction process, effective control of jacking construction and monitoring. The comparison between theoretical analysis and measured results shows that the simulation results are reasonable, and the construction monitoring scheme based on 3G network and data collection can be used as reference.展开更多
The faults in switched reluctance motors(SRMs) were detected and diagnosed in real time with the Kohonen neural network. When a fault happens, both financial losses and undesired situations may occur. For these reason...The faults in switched reluctance motors(SRMs) were detected and diagnosed in real time with the Kohonen neural network. When a fault happens, both financial losses and undesired situations may occur. For these reasons, it is important to detect the incipient faults of SRMs and to diagnose which faults have occurred. In this study, a test rig was realized to determine the healthy and faulty conditions of SRMs. A data set for the Kohonen neural network was created with implemented measurements. A graphical user interface(GUI) was created in Matlab to test the performance of the Kohonen artificial neural network in real time. The data of the SRM was transferred to this software with a data acquisition card. The condition of the motor was monitored by marking the data measured in real time on the weight position graph of the Kohonen neural network. This test rig is capable of real-time monitoring of the condition of SRMs, which are used with intermittent or continuous operation, and is capable of detecting and diagnosing the faults that may occur in the motor. The Kohonen neural network used for detection and diagnosis of faults of the SRM in real time with Matlab GUI was embedded in an STM32 processor. A prototype with the STM32 processor was developed to detect and diagnose the faults of SRMs independent of computers.展开更多
Over the last decades,an expansion of the underground network has been taking place to cope with the increasing amount of moving people and freight.As a consequence,it is of vital importance to guarantee the full func...Over the last decades,an expansion of the underground network has been taking place to cope with the increasing amount of moving people and freight.As a consequence,it is of vital importance to guarantee the full functionality of the tunnel network by means of preventive maintenance and the monitoring of the tunnel lining state over time.A new method has been developed for the real-time prediction of the utilization level in tunnel segmental linings based on input monitoring data.The new concept is founded on a framework,which encompasses an offline and an online stage.In the former,the generation of feedforward neural networks is accomplished by employing synthetically produced data.Finite element simulations of the lining structure are conducted to analyze the structural response under multiple loading conditions.The scenarios are generated by assuming ranges of variation of the model input parameters to account for the uncertainty due to the not fully determined in situ conditions.Input and target quantities are identified to better assess the structural utilization of the lining.The latter phase consists in the application of the methodological framework on input monitored data,which allows for a real-time prediction of the physical quantities deployed for the estimation of the lining utilization.The approach is validated on a full-scale test of segmental lining,where the predicted quantities are compared with the actual measurements.Finally,it is investigated the influence of artificial noise added to the training data on the overall prediction performances and the benefits along with the limits of the concept are set out.展开更多
A multi-parameters monitoring system based on wireless network was set up to achieve remote real-time monitoring of aquaculture water quality,in order to improve the quality of aquaculture products and solve such prob...A multi-parameters monitoring system based on wireless network was set up to achieve remote real-time monitoring of aquaculture water quality,in order to improve the quality of aquaculture products and solve such problems as being difficult in wiring and high costs in current monitoring system.In the system solar cells and lithium cells were used for power supply.The YCS-2000 dissolved oxygen sensor,pH electrode,Pt1000 temperature sensor and ammonia nitrogen sensor were used to monitor the parameters of aquaculture water quality;STM32F103 chip was used for data processing;Zigbee and GPRS modules were used for data transmission to the remote monitoring center,where the data were stored and displayed.The system was connected with aerator to realize automatic control of dissolved oxygen concentration.The test results showed high confidence level of data transmission with a packet loss rate of 0.43%.Therefore,the system could fulfill the real-time remote monitoring of aquaculture water quality and had great practical significance in reduction of labor intensity,improvement of quality of aquatic products and protection of water environment.展开更多
In view of the rapid growth of China's aging population and the rising demand for the medical services,it is more necessary to build a health management system of the traditional Chinese medicine based on the wire...In view of the rapid growth of China's aging population and the rising demand for the medical services,it is more necessary to build a health management system of the traditional Chinese medicine based on the wireless sensor networks.This design combines the ZigBee technology,the city grid management and the virtual reality technology,to establish a real-time,accurate and fine health monitoring system,so as to comprehensively improve the efficiency,quality and level of people's health management.展开更多
With the rapid development and wide application of network technology, information security issues are increasingly highlighted, received more and more attention. This article introduces the present situation of netwo...With the rapid development and wide application of network technology, information security issues are increasingly highlighted, received more and more attention. This article introduces the present situation of network information security, discusses the connotation of network information security, and analyzes the main threat to the security of the network information. And we separately detailed description of the data monitoring platform architecture from the data layer, network layer and presentation layer three levels, focuses on the functional structure of intelligent database platform, and puts forward to measures that ensure the safety of the platform and the internal data security. Through the design of the platform to improve the information security system has certain significance.展开更多
The aircraft condition monitoring network is responsible for collecting the status of each component in aircraft. The reliability of this network has a significant effect on safety of the aircraft. The aircraft condit...The aircraft condition monitoring network is responsible for collecting the status of each component in aircraft. The reliability of this network has a significant effect on safety of the aircraft. The aircraft condition monitoring network works in a real-time manner that all the data should be transmitted within the deadline to ensure that the control center makes proper decision in time. Only the connectedness between the source node and destination cannot guarantee the data to be transmitted in time. In this paper, we take the time deadline into account and build the task-based reliability model. The binary decision diagram (BDD), which has the merit of efficiency in computing and storage space, is introduced when calculating the reliability of the network and addressing the essential variable. A case is analyzed using the algorithm proposed in this paper. The experimental results show that our method is efficient and proper for the reliability analysis of the real-time network.展开更多
Simple navigation receivers can be used for positioning with sub-centimeter accuracy in a wireless sensor network if the read-out of the carrier phase(CP)data is possible and all data are permanently broadcast to a ce...Simple navigation receivers can be used for positioning with sub-centimeter accuracy in a wireless sensor network if the read-out of the carrier phase(CP)data is possible and all data are permanently broadcast to a central processing computer.At this base station an automated near real-time processing takes place and a precise differential GNSS-based positioning of the involved sensor nodes is computed.The paper describes the technical principles of such a system with its essential demands for the sensing,the communication,and the computing components.First experiences in a research project related to landslide monitoring are depicted.Of course the developed system can also be embedded for location finding in a widespread multifunctional geo sensor network.The quality of the obtained result is restricted due to the fact that the CP measurements must be recorded over a certain time span,usually a few minutes for every independent position solution.As far as possible a modular structure with commercial off-theshelf components,e.g.standard wireless local area network for communication,and in cooperation of existing proofed and powerful program tools is chosen.Open interfaces are used as far as possible.展开更多
Recent developments in technology have helped to reduce the physical size and weight of devices and opened up new opportunities for their application in delivering unobtrusive healthcare services. In particular, kinet...Recent developments in technology have helped to reduce the physical size and weight of devices and opened up new opportunities for their application in delivering unobtrusive healthcare services. In particular, kinetic and kinematic systems, that use sensors attached to the body, are currently being used to measure and understand many different aspects of human gait and behaviour. This has been particularly useful in treating stroke patients, rehabilitation, and understanding sedentary behaviour. Nonetheless, many of these systems are only capable of providing information about rudimentary movement rather than data on the mechanics of motion itself (tendons, ligaments and so on). Therefore, the information required by healthcare professionals to treat diseases like progressive deterioration of the musculoskeletal system, i.e. arthritis, cannot be determined. This paper discusses some of the technologies currently used to assess movement and posits a novel approach based on strain gauge technology to measure the constituent parts of a joint and its movement. In this way, the mechanics of motion can be studied and used to help detect and treat musculoskeletal diseases. A case study is presented to demonstrate the applicability of our approach.展开更多
文摘In this paper, we introduce a system architecture for a patient centered mobile health monitoring (PCMHM) system that deploys different sensors to determine patients’ activities, medical conditions, and the cause of an emergency event. This system combines and analyzes sensor data to produce the patients’ detailed health information in real-time. A central computational node with data analyzing capability is used for sensor data integration and analysis. In addition to medical sensors, surrounding environmental sensors are also utilized to enhance the interpretation of the data and to improve medical diagnosis. The PCMHM system has the ability to provide on-demand health information of patients via the Internet, track real-time daily activities and patients’ health condition. This system also includes the capability for assessing patients’ posture and fall detection.
文摘Hydrological monitoring and real-time access to data are valuable for hydrological research and water resources management. In the recent decades, rapid developments in digital technology, micro-electromechanical systems, low power micro-sensing technologies and improved industrial manufacturing processes have resulted in retrieving real-time data through Wireless Sensor Networks (WSNs) systems. In this study, a remotely operated low-cost and robust WSN system was developed to monitor and collect real-time hydrologic data from a small agricultural watershed in harsh weather conditions and upland rolling topography of Southern Ontario, Canada. The WSN system was assembled using off-the-shelf hardware components, and an open source operating system was used to minimize the cost. The developed system was rigorously tested in the laboratory and the field and found to be accurate and reliable for monitoring climatic and hydrologic parameters. The soil moisture and runoff data for 7 springs, 19 summer, and 19 fall season rainfall events over the period of more than two years were successfully collected in a small experimental agricultural watershed situated near Elora, Ontario, Canada. The developed WSN system can be readily extended for the purpose of most hydrological monitoring applications, although it was explicitly tailored for a project focused on mapping the Variable Source Areas (VSAs) in a small agricultural watershed.
文摘This paper takes the right branch main channel Bridge of Huai River Bridge in Huainan as the engineering background, uses the finite element software Midas and the ANSYS to simulate and analyze the jacking construction of the bridge, and according to the theoretical calculation, the construction monitoring plan is developed, and the stress and deformation of the key section and part of the structure are monitored. Construction monitoring combined with 3 g network and data acquisition module, monitoring data for the real time measurement, the centralized acquisition and wireless transmission, accomplish on-line real-time monitoring of the bridge construction process, effective control of jacking construction and monitoring. The comparison between theoretical analysis and measured results shows that the simulation results are reasonable, and the construction monitoring scheme based on 3G network and data collection can be used as reference.
基金Project(No.KBü-BAP-C-11-D-003)supported by the Karabük University BAP Unit,Turkey
文摘The faults in switched reluctance motors(SRMs) were detected and diagnosed in real time with the Kohonen neural network. When a fault happens, both financial losses and undesired situations may occur. For these reasons, it is important to detect the incipient faults of SRMs and to diagnose which faults have occurred. In this study, a test rig was realized to determine the healthy and faulty conditions of SRMs. A data set for the Kohonen neural network was created with implemented measurements. A graphical user interface(GUI) was created in Matlab to test the performance of the Kohonen artificial neural network in real time. The data of the SRM was transferred to this software with a data acquisition card. The condition of the motor was monitored by marking the data measured in real time on the weight position graph of the Kohonen neural network. This test rig is capable of real-time monitoring of the condition of SRMs, which are used with intermittent or continuous operation, and is capable of detecting and diagnosing the faults that may occur in the motor. The Kohonen neural network used for detection and diagnosis of faults of the SRM in real time with Matlab GUI was embedded in an STM32 processor. A prototype with the STM32 processor was developed to detect and diagnose the faults of SRMs independent of computers.
基金funded by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation,Project No.77309832)within Subprojects C1 and B2 of the Collaborative Research Center SFB 837"Interaction Modeling in Mechanised Tunnelling",sited at the Ruhr University Bochum,Germany.
文摘Over the last decades,an expansion of the underground network has been taking place to cope with the increasing amount of moving people and freight.As a consequence,it is of vital importance to guarantee the full functionality of the tunnel network by means of preventive maintenance and the monitoring of the tunnel lining state over time.A new method has been developed for the real-time prediction of the utilization level in tunnel segmental linings based on input monitoring data.The new concept is founded on a framework,which encompasses an offline and an online stage.In the former,the generation of feedforward neural networks is accomplished by employing synthetically produced data.Finite element simulations of the lining structure are conducted to analyze the structural response under multiple loading conditions.The scenarios are generated by assuming ranges of variation of the model input parameters to account for the uncertainty due to the not fully determined in situ conditions.Input and target quantities are identified to better assess the structural utilization of the lining.The latter phase consists in the application of the methodological framework on input monitored data,which allows for a real-time prediction of the physical quantities deployed for the estimation of the lining utilization.The approach is validated on a full-scale test of segmental lining,where the predicted quantities are compared with the actual measurements.Finally,it is investigated the influence of artificial noise added to the training data on the overall prediction performances and the benefits along with the limits of the concept are set out.
基金The authors acknowledge that the research was financially supported by“Fundamental Research Funds for the Central Universities(Grant No.XDJK2014D006 and No.2362014XK13).
文摘A multi-parameters monitoring system based on wireless network was set up to achieve remote real-time monitoring of aquaculture water quality,in order to improve the quality of aquaculture products and solve such problems as being difficult in wiring and high costs in current monitoring system.In the system solar cells and lithium cells were used for power supply.The YCS-2000 dissolved oxygen sensor,pH electrode,Pt1000 temperature sensor and ammonia nitrogen sensor were used to monitor the parameters of aquaculture water quality;STM32F103 chip was used for data processing;Zigbee and GPRS modules were used for data transmission to the remote monitoring center,where the data were stored and displayed.The system was connected with aerator to realize automatic control of dissolved oxygen concentration.The test results showed high confidence level of data transmission with a packet loss rate of 0.43%.Therefore,the system could fulfill the real-time remote monitoring of aquaculture water quality and had great practical significance in reduction of labor intensity,improvement of quality of aquatic products and protection of water environment.
文摘In view of the rapid growth of China's aging population and the rising demand for the medical services,it is more necessary to build a health management system of the traditional Chinese medicine based on the wireless sensor networks.This design combines the ZigBee technology,the city grid management and the virtual reality technology,to establish a real-time,accurate and fine health monitoring system,so as to comprehensively improve the efficiency,quality and level of people's health management.
文摘With the rapid development and wide application of network technology, information security issues are increasingly highlighted, received more and more attention. This article introduces the present situation of network information security, discusses the connotation of network information security, and analyzes the main threat to the security of the network information. And we separately detailed description of the data monitoring platform architecture from the data layer, network layer and presentation layer three levels, focuses on the functional structure of intelligent database platform, and puts forward to measures that ensure the safety of the platform and the internal data security. Through the design of the platform to improve the information security system has certain significance.
基金National Natural Science Foundation of China (60879024)
文摘The aircraft condition monitoring network is responsible for collecting the status of each component in aircraft. The reliability of this network has a significant effect on safety of the aircraft. The aircraft condition monitoring network works in a real-time manner that all the data should be transmitted within the deadline to ensure that the control center makes proper decision in time. Only the connectedness between the source node and destination cannot guarantee the data to be transmitted in time. In this paper, we take the time deadline into account and build the task-based reliability model. The binary decision diagram (BDD), which has the merit of efficiency in computing and storage space, is introduced when calculating the reliability of the network and addressing the essential variable. A case is analyzed using the algorithm proposed in this paper. The experimental results show that our method is efficient and proper for the reliability analysis of the real-time network.
文摘Simple navigation receivers can be used for positioning with sub-centimeter accuracy in a wireless sensor network if the read-out of the carrier phase(CP)data is possible and all data are permanently broadcast to a central processing computer.At this base station an automated near real-time processing takes place and a precise differential GNSS-based positioning of the involved sensor nodes is computed.The paper describes the technical principles of such a system with its essential demands for the sensing,the communication,and the computing components.First experiences in a research project related to landslide monitoring are depicted.Of course the developed system can also be embedded for location finding in a widespread multifunctional geo sensor network.The quality of the obtained result is restricted due to the fact that the CP measurements must be recorded over a certain time span,usually a few minutes for every independent position solution.As far as possible a modular structure with commercial off-theshelf components,e.g.standard wireless local area network for communication,and in cooperation of existing proofed and powerful program tools is chosen.Open interfaces are used as far as possible.
文摘Recent developments in technology have helped to reduce the physical size and weight of devices and opened up new opportunities for their application in delivering unobtrusive healthcare services. In particular, kinetic and kinematic systems, that use sensors attached to the body, are currently being used to measure and understand many different aspects of human gait and behaviour. This has been particularly useful in treating stroke patients, rehabilitation, and understanding sedentary behaviour. Nonetheless, many of these systems are only capable of providing information about rudimentary movement rather than data on the mechanics of motion itself (tendons, ligaments and so on). Therefore, the information required by healthcare professionals to treat diseases like progressive deterioration of the musculoskeletal system, i.e. arthritis, cannot be determined. This paper discusses some of the technologies currently used to assess movement and posits a novel approach based on strain gauge technology to measure the constituent parts of a joint and its movement. In this way, the mechanics of motion can be studied and used to help detect and treat musculoskeletal diseases. A case study is presented to demonstrate the applicability of our approach.