Intermediate temperature embritttement (ITE) is a general phenomenon in Ni alloys and recently was interpreted by dynamic strain aging (DSA). The relationship between ITE and DSA was studied by a binary Ni-Bi allo...Intermediate temperature embritttement (ITE) is a general phenomenon in Ni alloys and recently was interpreted by dynamic strain aging (DSA). The relationship between ITE and DSA was studied by a binary Ni-Bi alloy. The experimental alloy of well-controlled purity was produced by vacuum induction inching and then heat-treated properly. Tensile tests were performed at various tensile temperatures, and the elongation at fracture was used to indicate the ductility. In order to identify the mechanisms of fracture and ITE, fracture morphologies of the samples of low ductility were observed by scanning electron microscopy. According to the tensile ductility, Ni-Bi alloy shows an obvious embrittlement behavior in the intermediate temperature range (700--750℃ ). However, the stress strain curves of Ni-Bi alloy and the fracture morphologies indicate that DSA does not exist over the whole temperature range. Based on the experimental results and literatures, the interpretation of DSA was then discussed and proved to be invalid for elucidating the general feature of ITE in Ni-Bi alloy and Ni-based superalloys.展开更多
基金Item Sponsored by National Natural Science Foundation of China(51001011)Fundamental Research Funds for the Central Universities of China(FRF-TP-12-042A)Fok Ying Tong Education Foundation(141043)
文摘Intermediate temperature embritttement (ITE) is a general phenomenon in Ni alloys and recently was interpreted by dynamic strain aging (DSA). The relationship between ITE and DSA was studied by a binary Ni-Bi alloy. The experimental alloy of well-controlled purity was produced by vacuum induction inching and then heat-treated properly. Tensile tests were performed at various tensile temperatures, and the elongation at fracture was used to indicate the ductility. In order to identify the mechanisms of fracture and ITE, fracture morphologies of the samples of low ductility were observed by scanning electron microscopy. According to the tensile ductility, Ni-Bi alloy shows an obvious embrittlement behavior in the intermediate temperature range (700--750℃ ). However, the stress strain curves of Ni-Bi alloy and the fracture morphologies indicate that DSA does not exist over the whole temperature range. Based on the experimental results and literatures, the interpretation of DSA was then discussed and proved to be invalid for elucidating the general feature of ITE in Ni-Bi alloy and Ni-based superalloys.